ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Neural Stimulation with a Carbon Nanotube Microelectrode Array

View Author Information
Department of Applied Physics, Department of Ophthalmology, Department of Chemistry, and Department of Electrical Engineering, Stanford University, Stanford, California 94305
Cite this: Nano Lett. 2006, 6, 9, 2043–2048
Publication Date (Web):August 26, 2006
https://doi.org/10.1021/nl061241t
Copyright © 2006 American Chemical Society

    Article Views

    5973

    Altmetric

    -

    Citations

    338
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    We present a novel prototype neural interface using vertically aligned multiwalled carbon nanotube (CNT) pillars as microelectrodes. Functionalized hydrophilic CNT microelectrodes offer a high charge injection limit (1−1.6 mC/cm2) without faradic reactions. The first repeated in vitro stimulation of hippocampal neurons with CNT electrodes is demonstrated. These results suggest that CNTs are capable of providing far safer and more efficacious solutions for neural prostheses than previous metal electrode approaches.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Corresponding author, [email protected].

     Department of Applied Physics.

     Department of Ophthalmology.

    §

     Present address:  Plager Vision Center, Santa Cruz, CA.

     Department of Chemistry.

     Department of Electrical Engineering.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    EIS Bode plots of CNT electrodes before and after surface treatments, potential transient demonstrating the durability of CNT electrodes under continuous pulsing, and an image of a CNT microelectrode array with a bonded chamber. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 338 publications.

    1. Longchun Wang, Ye Xi, Qingda Xu, Chunpeng Jiang, Jiawei Cao, Xiaolin Wang, Bin Yang, Jingquan Liu. Multifunctional IrOx Neural Probe for In Situ Dynamic Brain Hypoxia Evaluation. ACS Nano 2023, 17 (22) , 22277-22286. https://doi.org/10.1021/acsnano.3c02704
    2. Spencer R. Averbeck, Doris Xu, Brendan B. Murphy, Kateryna Shevchuk, Sneha Shankar, Mark Anayee, Marcelo Der Torossian Torres, Michael S. Beauchamp, Cesar de la Fuente-Nunez, Yury Gogotsi, Flavia Vitale. Stability of Ti3C2Tx MXene Films and Devices under Clinical Sterilization Processes. ACS Nano 2023, 17 (10) , 9442-9454. https://doi.org/10.1021/acsnano.3c01525
    3. Joohyuk Kang, Young-Woo Lim, Injun Lee, Seungwan Kim, Kyung Yeun Kim, Wonryung Lee, Byeong-Soo Bae. Photopatternable Poly(dimethylsiloxane) (PDMS) for an Intrinsically Stretchable Organic Electrochemical Transistor. ACS Applied Materials & Interfaces 2022, 14 (21) , 24840-24849. https://doi.org/10.1021/acsami.2c06343
    4. Anna Mariano, Claudia Lubrano, Ugo Bruno, Chiara Ausilio, Nikita Bhupesh Dinger, Francesca Santoro. Advances in Cell-Conductive Polymer Biointerfaces and Role of the Plasma Membrane. Chemical Reviews 2022, 122 (4) , 4552-4580. https://doi.org/10.1021/acs.chemrev.1c00363
    5. August Kohls, Mackenzie Maurer Ditty, Fahimeh Dehghandehnavi, Si-Yang Zheng. Vertically Aligned Carbon Nanotubes as a Unique Material for Biomedical Applications. ACS Applied Materials & Interfaces 2022, 14 (5) , 6287-6306. https://doi.org/10.1021/acsami.1c20423
    6. Hyeonsu Woo, Suhyeon Kim, Hyoryung Nam, Wonsuk Choi, Kumjae Shin, Kanghyun Kim, Seungbin Yoon, Geon Hwee Kim, Jinseok Kim, Geunbae Lim. Au Hierarchical Nanostructure-Based Surface Modification of Microelectrodes for Improved Neural Signal Recording. Analytical Chemistry 2021, 93 (34) , 11765-11774. https://doi.org/10.1021/acs.analchem.1c02168
    7. Pankaj Gupta, Connor E. Rahm, Benjamin Griesmer, Noe T. Alvarez. Carbon Nanotube Microelectrode Set: Detection of Biomolecules to Heavy Metals. Analytical Chemistry 2021, 93 (20) , 7439-7448. https://doi.org/10.1021/acs.analchem.1c00360
    8. Noe T. Alvarez, Elke Buschbeck, Sydney Miller, Anh Duc Le, Vandna K. Gupta, Chethani Ruhunage, Ilya Vilinsky, Yishan Ma. Carbon Nanotube Fibers for Neural Recording and Stimulation. ACS Applied Bio Materials 2020, 3 (9) , 6478-6487. https://doi.org/10.1021/acsabm.0c00861
    9. Pankaj Gupta, Kyrus Tsai, Chethani K. Ruhunage, Vandna K. Gupta, Connor E. Rahm, Dehua Jiang, Noe T. Alvarez. True Picomolar Neurotransmitter Sensor Based on Open-Ended Carbon Nanotubes. Analytical Chemistry 2020, 92 (12) , 8536-8545. https://doi.org/10.1021/acs.analchem.0c01363
    10. Anil Koklu, Amin Mansoorifar, Jason Giuliani, Carlos Monton, Ali Beskok. Self-Similar Interfacial Impedance of Electrodes in High Conductivity Media: II. Disk Electrodes. Analytical Chemistry 2019, 91 (3) , 2455-2463. https://doi.org/10.1021/acs.analchem.8b05275
    11. Rajiv Borah, Ganesh C. Ingavle, Susan R. Sandeman, Ashok Kumar, Sergey V. Mikhalovsky. Amine-Functionalized Electrically Conductive Core–Sheath MEH-PPV:PCL Electrospun Nanofibers for Enhanced Cell–Biomaterial Interactions. ACS Biomaterials Science & Engineering 2018, 4 (9) , 3327-3346. https://doi.org/10.1021/acsbiomaterials.8b00624
    12. Dong-Wook Park, Jared P. Ness, Sarah K. Brodnick, Corinne Esquibel, Joseph Novello, Farid Atry, Dong-Hyun Baek, Hyungsoo Kim, Jihye Bong, Kyle I. Swanson, Aaron J. Suminski, Kevin J. Otto, Ramin Pashaie, Justin C. Williams, and Zhenqiang Ma . Electrical Neural Stimulation and Simultaneous in Vivo Monitoring with Transparent Graphene Electrode Arrays Implanted in GCaMP6f Mice. ACS Nano 2018, 12 (1) , 148-157. https://doi.org/10.1021/acsnano.7b04321
    13. Flavia Vitale, Daniel G. Vercosa, Alexander V. Rodriguez, Sushma Sri Pamulapati, Frederik Seibt, Eric Lewis, J. Stephen Yan, Krishna Badhiwala, Mohammed Adnan, Gianni Royer-Carfagni, Michael Beierlein, Caleb Kemere, Matteo Pasquali, and Jacob T. Robinson . Fluidic Microactuation of Flexible Electrodes for Neural Recording. Nano Letters 2018, 18 (1) , 326-335. https://doi.org/10.1021/acs.nanolett.7b04184
    14. Mingyu Ryu, Jae Hoon Yang, Yumi Ahn, Minkyung Sim, Kyung Hwa Lee, Kyungsoo Kim, Taeju Lee, Seung-Jun Yoo, So Yeun Kim, Cheil Moon, Minkyu Je, Ji-Woong Choi, Youngu Lee, and Jae Eun Jang . Enhancement of Interface Characteristics of Neural Probe Based on Graphene, ZnO Nanowires, and Conducting Polymer PEDOT. ACS Applied Materials & Interfaces 2017, 9 (12) , 10577-10586. https://doi.org/10.1021/acsami.7b02975
    15. Yong Hee Kim, Gook Hwa Kim, Min Sun Kim, and Sang-Don Jung . Iridium Oxide–Electrodeposited Nanoporous Gold Multielectrode Array with Enhanced Stimulus Efficacy. Nano Letters 2016, 16 (11) , 7163-7168. https://doi.org/10.1021/acs.nanolett.6b03473
    16. Sachin Kumar and Kaushik Chatterjee . Comprehensive Review on the Use of Graphene-Based Substrates for Regenerative Medicine and Biomedical Devices. ACS Applied Materials & Interfaces 2016, 8 (40) , 26431-26457. https://doi.org/10.1021/acsami.6b09801
    17. Chuntao Chen, Ting Zhang, Qi Zhang, Zhangqi Feng, Chunlin Zhu, Yalin Yu, Kangming Li, Mengyao Zhao, Jiazhi Yang, Jian Liu, and Dongping Sun . Three-Dimensional BC/PEDOT Composite Nanofibers with High Performance for Electrode–Cell Interface. ACS Applied Materials & Interfaces 2015, 7 (51) , 28244-28253. https://doi.org/10.1021/acsami.5b07273
    18. Flavia Vitale, Samantha R. Summerson, Behnaam Aazhang, Caleb Kemere, and Matteo Pasquali . Neural Stimulation and Recording with Bidirectional, Soft Carbon Nanotube Fiber Microelectrodes. ACS Nano 2015, 9 (4) , 4465-4474. https://doi.org/10.1021/acsnano.5b01060
    19. Christopher A. R. Chapman, Hao Chen, Marianna Stamou, Juergen Biener, Monika M. Biener, Pamela J. Lein, and Erkin Seker . Nanoporous Gold as a Neural Interface Coating: Effects of Topography, Surface Chemistry, and Feature Size. ACS Applied Materials & Interfaces 2015, 7 (13) , 7093-7100. https://doi.org/10.1021/acsami.5b00410
    20. Alexander Weremfo, Paul Carter, D. Brynn Hibbert, and Chuan Zhao . Investigating the Interfacial Properties of Electrochemically Roughened Platinum Electrodes for Neural Stimulation. Langmuir 2015, 31 (8) , 2593-2599. https://doi.org/10.1021/la504876n
    21. Francesca Santoro, Jan Schnitker, Gregory Panaitov, and Andreas Offenhäusser . On Chip Guidance and Recording of Cardiomyocytes with 3D Mushroom-Shaped Electrodes. Nano Letters 2013, 13 (11) , 5379-5384. https://doi.org/10.1021/nl402901y
    22. Jun Wang, Raphaël Trouillon, Yuqing Lin, Maria I. Svensson, and Andrew G. Ewing . Individually Addressable Thin-Film Ultramicroelectrode Array for Spatial Measurements of Single Vesicle Release. Analytical Chemistry 2013, 85 (11) , 5600-5608. https://doi.org/10.1021/ac4009385
    23. Billyde Brown, Charles B. Parker, Brian R. Stoner, Warren M. Grill, and Jeffrey T. Glass . Electrochemical Charge Storage Properties of Vertically Aligned Carbon Nanotube Films: Effects of Thermal Oxidation. The Journal of Physical Chemistry C 2012, 116 (36) , 19526-19534. https://doi.org/10.1021/jp304419a
    24. Huanan Zhang, Jimmy Shih, Jian Zhu, and Nicholas A. Kotov . Layered Nanocomposites from Gold Nanoparticles for Neural Prosthetic Devices. Nano Letters 2012, 12 (7) , 3391-3398. https://doi.org/10.1021/nl3015632
    25. Silke Musa, Danielle R. Rand, Daire J. Cott, Josine Loo, Carmen Bartic, Wolfgang Eberle, Bart Nuttin, and Gustaaf Borghs . Bottom-Up SiO2 Embedded Carbon Nanotube Electrodes with Superior Performance for Integration in Implantable Neural Microsystems. ACS Nano 2012, 6 (6) , 4615-4628. https://doi.org/10.1021/nn201609u
    26. Yuqing Lin, Raphaël Trouillon, Maria I. Svensson, Jacqueline D. Keighron, Ann-Sofie Cans, and Andrew G. Ewing . Carbon-Ring Microelectrode Arrays for Electrochemical Imaging of Single Cell Exocytosis: Fabrication and Characterization. Analytical Chemistry 2012, 84 (6) , 2949-2954. https://doi.org/10.1021/ac3000368
    27. Debora W. Lin, Christopher J. Bettinger, Joshua P. Ferreira, Clifford L. Wang, and Zhenan Bao . A Cell-Compatible Conductive Film from a Carbon Nanotube Network Adsorbed on Poly-l-lysine. ACS Nano 2011, 5 (12) , 10026-10032. https://doi.org/10.1021/nn203870c
    28. Alberto Ansaldo, Elisa Castagnola, Emma Maggiolini, Luciano Fadiga, and Davide Ricci . Superior Electrochemical Performance of Carbon Nanotubes Directly Grown on Sharp Microelectrodes. ACS Nano 2011, 5 (3) , 2206-2214. https://doi.org/10.1021/nn103445d
    29. Andrew O. Fung, Christos Tsiokos, Omeed Paydar, Li Han Chen, Sungho Jin, Yibin Wang, and Jack W. Judy . Electrochemical Properties and Myocyte Interaction of Carbon Nanotube Microelectrodes. Nano Letters 2010, 10 (11) , 4321-4327. https://doi.org/10.1021/nl1013986
    30. Sejin Park, Youn Joo Song, Hankil Boo and Taek Dong Chung . Nanoporous Pt Microelectrode for Neural Stimulation and Recording: In Vitro Characterization. The Journal of Physical Chemistry C 2010, 114 (19) , 8721-8726. https://doi.org/10.1021/jp911256h
    31. Shih-Rung Yeh, Yung-Chan Chen, Huan-Chieh Su, Tri-Rung Yew, Hsiu-Hua Kao, Yu-Tao Lee, Tai-An Liu, Hsieh Chen, Yen-Chung Chang, Pin Chang and Hsin Chen . Interfacing Neurons both Extracellularly and Intracellularly Using Carbon−Nanotube Probes with Long-Term Endurance. Langmuir 2009, 25 (13) , 7718-7724. https://doi.org/10.1021/la900264x
    32. Pornnipa Vichchulada, Jihye Shim and Marcus D. Lay. Non-oxidizing Purification Method for Large Volumes of Long, Undamaged Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry C 2008, 112 (49) , 19186-19192. https://doi.org/10.1021/jp803989d
    33. Xianming Liu, Keith H. R. Baronian and Alison J. Downard. Patterned Arrays of Vertically Aligned Carbon Nanotube Microelectrodes on Carbon Films Prepared by Thermal Chemical Vapor Deposition. Analytical Chemistry 2008, 80 (22) , 8835-8839. https://doi.org/10.1021/ac801552a
    34. Bo Zhang,, Kelly L. Adams,, Sarah J. Luber,, Daniel J. Eves,, Michael L. Heien, and, Andrew G. Ewing. Spatially and Temporally Resolved Single-Cell Exocytosis Utilizing Individually Addressable Carbon Microelectrode Arrays. Analytical Chemistry 2008, 80 (5) , 1394-1400. https://doi.org/10.1021/ac702409s
    35. Yaoyao Liu, Shihong Xu, Yu Deng, Jinping Luo, Kui Zhang, Yan Yang, Longze Sha, Ruilin Hu, Zhaojie Xu, Erwei Yin, Qi Xu, Yirong Wu, Xinxia Cai. SWCNTs/PEDOT:PSS nanocomposites-modified microelectrode arrays for revealing locking relations between burst and local field potential in cultured cortical networks. Biosensors and Bioelectronics 2024, 253 , 116168. https://doi.org/10.1016/j.bios.2024.116168
    36. Samuel M. Hanser, Zijun Shao, He Zhao, B. Jill Venton. Electrochemical treatment in KOH improves carbon nanomaterial performance to multiple neurochemicals. The Analyst 2024, 149 (2) , 457-466. https://doi.org/10.1039/D3AN01710A
    37. S. Moslehi, C. Rowland, J. H. Smith, W. J. Watterson, W. Griffiths, R. D. Montgomery, S. Philliber, C. A. Marlow, M.-T. Perez, R. P. Taylor. Fractal Electronics for Stimulating and Sensing Neural Networks: Enhanced Electrical, Optical, and Cell Interaction Properties. 2024, 849-875. https://doi.org/10.1007/978-3-031-47606-8_43
    38. Wenlu Duan, Ulises Aregueta Robles, Laura Poole‐Warren, Dorna Esrafilzadeh. Bioelectronic Neural Interfaces: Improving Neuromodulation Through Organic Conductive Coatings. Advanced Science 2023, 39 https://doi.org/10.1002/advs.202306275
    39. Hongbian Li, Jinfen Wang, Ying Fang. Recent developments in multifunctional neural probes for simultaneous neural recording and modulation. Microsystems & Nanoengineering 2023, 9 (1) https://doi.org/10.1038/s41378-022-00444-5
    40. Lukas Matter, Bruce Harland, Brad Raos, Darren Svirskis, Maria Asplund. Generation of direct current electrical fields as regenerative therapy for spinal cord injury: A review. APL Bioengineering 2023, 7 (3) https://doi.org/10.1063/5.0152669
    41. Dong-Hee Kang, Jun-Gyu Choi, Won-June Lee, Dongmi Heo, Sungrok Wang, Sungjun Park, Myung-Han Yoon. Aqueous electrolyte-gated solution-processed metal oxide transistors for direct cellular interfaces. APL Bioengineering 2023, 7 (2) https://doi.org/10.1063/5.0138861
    42. Artur Filipe Rodrigues, Ana P. M. Tavares, Susana Simões, Rui P. F. F. Silva, Tomás Sobrino, Bruno R. Figueiredo, Goreti Sales, Lino Ferreira. Engineering graphene-based electrodes for optical neural stimulation. Nanoscale 2023, 15 (2) , 687-706. https://doi.org/10.1039/D2NR05256C
    43. Haiming Fan. Central Nervous System Nanotechnology. 2023, 655-692. https://doi.org/10.1007/978-981-16-8984-0_29
    44. Elisa Castagnola, X. Sally Zheng, X. Tracy Cui. Flexible and Soft Materials and Devices for Neural Interface. 2023, 79-139. https://doi.org/10.1007/978-981-16-5540-1_5
    45. Kaitlynn P. Olczak, Kevin J. Otto. Coatings for Microneural Implants: Electrical Considerations. 2023, 179-212. https://doi.org/10.1007/978-981-16-5540-1_7
    46. Yoonkey Nam. State-of-the-Art Technology on MEAs for Interfacing Live Neurons. 2023, 339-379. https://doi.org/10.1007/978-981-16-5540-1_8
    47. Anna Mariano, Claudia Latte Bovio, Valeria Criscuolo, Francesca Santoro. Bioinspired micro- and nano-structured neural interfaces. Nanotechnology 2022, 33 (49) , 492501. https://doi.org/10.1088/1361-6528/ac8881
    48. Saba Moslehi, Conor Rowland, Julian H. Smith, Willem Griffiths, William J. Watterson, Cristopher M. Niell, Benjamín J. Alemán, Maria-Thereza Perez, Richard P. Taylor. Comparison of fractal and grid electrodes for studying the effects of spatial confinement on dissociated retinal neuronal and glial behavior. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-21742-y
    49. Daiki Ando, Tetsuhiko F. Teshima, Francisco Zurita, Hu Peng, Kota Ogura, Kenji Kondo, Lennart Weiß, Ayumi Hirano-Iwata, Markus Becherer, Joe Alexander, Bernhard Wolfrum. Filtration-processed biomass nanofiber electrodes for flexible bioelectronics. Journal of Nanobiotechnology 2022, 20 (1) https://doi.org/10.1186/s12951-022-01684-3
    50. Shahram Amini, Wesley Seche, Nicholas May, Hongbin Choi, Pouya Tavousi, Sina Shahbazmohamadi. Femtosecond laser hierarchical surface restructuring for next generation neural interfacing electrodes and microelectrode arrays. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-18161-4
    51. Zijun Shao, Yuanyu Chang, B. Jill Venton. Carbon microelectrodes with customized shapes for neurotransmitter detection: A review. Analytica Chimica Acta 2022, 1223 , 340165. https://doi.org/10.1016/j.aca.2022.340165
    52. Gary Kwok Ki Chik, Na Xiao, Xudong Ji, Anderson Chun On Tsang, Gilberto Ka Kit Leung, Shiming Zhang, Chung Tin, Paddy Kwok Leung Chan. Flexible Multichannel Neural Probe Developed by Electropolymerization for Localized Stimulation and Sensing. Advanced Materials Technologies 2022, 7 (8) https://doi.org/10.1002/admt.202200143
    53. Shihong Xu, Yu Deng, Jinping Luo, Yaoyao Liu, Enhui He, Yan Yang, Kui Zhang, Longze Sha, Yuchun Dai, Tao Ming, Yilin Song, Luyi Jing, Chengyu Zhuang, Qi Xu, Xinxia Cai. A Neural Sensor with a Nanocomposite Interface for the Study of Spike Characteristics of Hippocampal Neurons under Learning Training. Biosensors 2022, 12 (7) , 546. https://doi.org/10.3390/bios12070546
    54. Mehdi Farhoudi, Saeed Sadigh-Eteghad, Javad Mahmoudi, Afsaneh Farjami, Mohammad Mahmoudian, Sara Salatin. The Therapeutic Benefits of Intravenously Administrated Nanoparticles in Stroke and Age-related Neurodegenerative Diseases. Current Pharmaceutical Design 2022, 28 (24) , 1985-2000. https://doi.org/10.2174/1381612828666220608093639
    55. Mohsen Maddah, Charles P. Unsworth, Gideon J. Gouws, Natalie O. V. Plank, . Synthesis of encapsulated ZnO nanowires provide low impedance alternatives for microelectrodes. PLOS ONE 2022, 17 (6) , e0270164. https://doi.org/10.1371/journal.pone.0270164
    56. Sreenivas Bhaskara, Tushar Sakorikar, Suman Chatterjee, K.V. Shabari Girishan, Hardik J. Pandya. Recent advancements in Micro-engineered devices for surface and deep brain animal studies: A review. Sensing and Bio-Sensing Research 2022, 36 , 100483. https://doi.org/10.1016/j.sbsr.2022.100483
    57. Zhiyuan Xiong, Wenhui Huang, Qinghua Liang, Yang Cao, Shuyi Liu, Zicong He, Ranran Zhang, Bin Zhang, Rylie Green, Shuixing Zhang, Dan Li. Harnessing the 2D Structure‐Enabled Viscoelasticity of Graphene‐Based Hydrogel Membranes for Chronic Neural Interfacing. Small Methods 2022, 6 (5) https://doi.org/10.1002/smtd.202200022
    58. Saba Moslehi, Conor Rowland, Julian H. Smith, William J. Watterson, David Miller, Cristopher M. Niell, Benjamín J. Alemán, Maria-Thereza Perez, Richard P. Taylor, . Controlled assembly of retinal cells on fractal and Euclidean electrodes. PLOS ONE 2022, 17 (4) , e0265685. https://doi.org/10.1371/journal.pone.0265685
    59. Joel Hubbard, Joaquin Tirano, Hugo Zea, Claudia Luhrs. Effects of Thermal Activation on CNT Nanocomposite Electrical Conductivity and Rheology. Polymers 2022, 14 (5) , 1003. https://doi.org/10.3390/polym14051003
    60. Qian Li, Bodong Kang, Libin Wang, Tao Chen, Yu Zhao, Shilun Feng, Rongjing Li, Hongtian Zhang. Microfluidics embedded with microelectrodes for electrostimulation of neural stem cells proliferation. Chinese Chemical Letters 2022, 33 (3) , 1308-1312. https://doi.org/10.1016/j.cclet.2021.08.006
    61. Hai-lan Chen, Guang-zhao Tian, Hao Yan, Song-xin Yang, Dong-Hwan Kim. Fabrication of vertically aligned PEDOT nanotube arrays on microelectrodes to interface neurons. Electrochimica Acta 2022, 404 , 139583. https://doi.org/10.1016/j.electacta.2021.139583
    62. Artur Filipe Rodrigues, Catarina Rebelo, Tiago Reis, João André Sousa, Sónia L. C. Pinho, João Sargento-Freitas, João Peça, Lino Ferreira. Therapeutic Approaches for Stroke: A Biomaterials Perspective. 2022, 185-218. https://doi.org/10.1007/978-3-030-81400-7_8
    63. Haiming Fan. Central Nervous System Nanotechnology. 2022, 1-38. https://doi.org/10.1007/978-981-13-9374-7_29-1
    64. Sameer Sonkusale, Maryam Shojaei Baghini, Shuchin Aeron. Materials and Processing for Flexible Bioelectronics. 2022, 1-25. https://doi.org/10.1007/978-3-030-98538-7_1
    65. Jiaru Fang, Dong Liu, Dongxin Xu, Qianni Wu, Hongbo Li, Ying Li, Ning Hu. Integrated Au-Nanoroded Biosensing and Regulating Platform for Photothermal Therapy of Bradyarrhythmia. Research 2022, 2022 https://doi.org/10.34133/2022/9854342
    66. Dhurgham Khudhair, Julie Gaburro, Hoda Amani Hamedani, Anders Barlow, Hamid Garmestani, Asim Bhatti. Investigation of Effects of Copper, Zinc, and Strontium Doping on Electrochemical Properties of Titania Nanotube Arrays for Neural Interface Applications. Processes 2021, 9 (12) , 2099. https://doi.org/10.3390/pr9122099
    67. RaviPrakash Magisetty, Naga Srilatha Cheekuramelli, , and Radhamanohar Aepuru. Functionalized Carbon Nano Lab‐on‐a‐Chip Devices for Environment. 2021, 265-282. https://doi.org/10.1002/9783527830978.ch11
    68. Qi Zeng, Zhaoling Huang, Guangyi Cai, Tianzhun Wu. Platinum Nanocrystal Assisted by Low‐Content Iridium for High‐Performance Flexible Electrode: Applications on Neural Interface, Water Oxidation, and Anti‐Microbial Contamination. Advanced Materials Interfaces 2021, 8 (22) https://doi.org/10.1002/admi.202100965
    69. Nan Wu, Shu Wan, Shi Su, Haizhou Huang, Guangbin Dou, Litao Sun. Electrode materials for brain–machine interface: A review. InfoMat 2021, 3 (11) , 1174-1194. https://doi.org/10.1002/inf2.12234
    70. Surabhi Nimbalkar, Soshi Samejima, Viet Dang, Trevor Hunt, Omar Nunez, Chet Moritz, Sam Kassegne. Graphene on glassy carbon microelectrodes demonstrate long-term structural and functional stability in neurophysiological recording and stimulation. Journal of Neural Engineering 2021, 18 (5) , 056035. https://doi.org/10.1088/1741-2552/ac245a
    71. W. Tong, U. Aregueta Robles, A. Gelmi. Bioelectronics and Neural Interfaces. 2021, 180-230. https://doi.org/10.1039/9781788019828-00180
    72. Mamta Devi, Maria Vomero, Erwin Fuhrer, Elisa Castagnola, Calogero Gueli, Surabhi Nimbalkar, Mieko Hirabayashi, Sam Kassegne, Thomas Stieglitz, Swati Sharma. Carbon-based neural electrodes: promises and challenges. Journal of Neural Engineering 2021, 18 (4) , 041007. https://doi.org/10.1088/1741-2552/ac1e45
    73. Ieva Vėbraitė, Yael Hanein. Soft Devices for High-Resolution Neuro-Stimulation: The Interplay Between Low-Rigidity and Resolution. Frontiers in Medical Technology 2021, 3 https://doi.org/10.3389/fmedt.2021.675744
    74. Yuan Zeng, Zubayer Ibne Ferdous, Weixiang Zhang, Mufan Xu, Anlan Yu, Drew Patel, Valentin Post, Xiaochen Guo, Yevgeny Berdichevsky, Zhiyuan Yan. Understanding the Impact of Neural Variations and Random Connections on Inference. Frontiers in Computational Neuroscience 2021, 15 https://doi.org/10.3389/fncom.2021.612937
    75. Xin Sally Zheng, Chao Tan, Elisa Castagnola, Xinyan Tracy Cui. Electrode Materials for Chronic Electrical Microstimulation. Advanced Healthcare Materials 2021, 10 (12) , 2100119. https://doi.org/10.1002/adhm.202100119
    76. Katharina Foremny, Wiebke Konerding, Ailke Behrens, Peter Baumhoff, Ulrich Froriep, Andrej Kral, Theodor Doll. Carbon-Nanotube-Coated Surface Electrodes for Cortical Recordings In Vivo. Nanomaterials 2021, 11 (4) , 1029. https://doi.org/10.3390/nano11041029
    77. Rajiv Kumar, Kiran Gulia. The convergence of nanotechnology‐stem cell, nanotopography‐mechanobiology, and biotic‐abiotic interfaces: Nanoscale tools for tackling the top killer, arteriosclerosis, strokes, and heart attacks. Nano Select 2021, 2 (4) , 655-687. https://doi.org/10.1002/nano.202000192
    78. Zuoxian Xiang, Chuanxiang Tang, Chao Chang, Guozhi Liu. A new viewpoint and model of neural signal generation and transmission: Signal transmission on unmyelinated neurons. Nano Research 2021, 14 (3) , 590-600. https://doi.org/10.1007/s12274-020-3016-1
    79. Anindya Nag, Md Eshrat E. Alahi, Subhas Chandra Mukhopadhyay. Recent progress in the fabrication of graphene fibers and their composites for applications of monitoring human activities. Applied Materials Today 2021, 22 , 100953. https://doi.org/10.1016/j.apmt.2021.100953
    80. Sahar Elyahoodayan, Wenxuan Jiang, Curtis D. Lee, Xiecheng Shao, Gregory Weiland, John J. Whalen, Artin Petrossians, Dong Song. Stimulation and Recording of the Hippocampus Using the Same Pt-Ir Coated Microelectrodes. Frontiers in Neuroscience 2021, 15 https://doi.org/10.3389/fnins.2021.616063
    81. Myriam Barrejón Araque, Susanna Bosi. Carbon Nanomaterials for Neuronal Tissue Engineering. 2021, 184-222. https://doi.org/10.1039/9781839161070-00184
    82. Mohaddeseh Vafaiee, Raheleh Mohammadpour, Manouchehr Vossoughi, Elham Asadian, Mahyar Janahmadi, Pezhman Sasanpour. Carbon Nanotube Modified Microelectrode Array for Neural Interface. Frontiers in Bioengineering and Biotechnology 2021, 8 https://doi.org/10.3389/fbioe.2020.582713
    83. Yoonkey Nam. State-of-the-Art Technology on MEAs for Interfacing Live Neurons. 2021, 1-41. https://doi.org/10.1007/978-981-15-2848-4_8-2
    84. Daniel R. Merrill. Electrodes and instrumentation for neurostimulation. 2021, 77-150. https://doi.org/10.1016/B978-0-12-822828-9.00002-2
    85. Elisa Castagnola, X. Sally Zheng, X. Tracy Cui. Flexible and Soft Materials and Devices for Neural Interface. 2021, 1-61. https://doi.org/10.1007/978-981-15-2848-4_5-1
    86. Stephanie N. Iwasa, HaoTian H. Shi, Sung Hwa Hong, Tianhao Chen, Melissa Marquez-Chin, Christian Iorio-Morin, Suneil K. Kalia, Milos R. Popovic, Hani E. Naguib, Cindi M. Morshead. Novel Electrode Designs for Neurostimulation in Regenerative Medicine: Activation of Stem Cells. Bioelectricity 2020, 2 (4) , 348-361. https://doi.org/10.1089/bioe.2020.0034
    87. Anastasia Ludwig, Sebnem Kesaf, Joonas J. Heikkinen, Tatiana Sukhanova, Shokoufeh Khakipoor, Florence Molinari, Christophe Pellegrino, Sung I. Kim, Jeon G. Han, Henri J. Huttunen, Sari E. Lauri, Sami Franssila, Ville Jokinen, Claudio Rivera. Novel carbon film induces precocious calcium oscillation to promote neuronal cell maturation. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-74535-6
    88. Maryam A. Hejazi, Wei Tong, Alastair Stacey, Shi H. Sun, Molis Yunzab, Ali Almasi, Young Jun Jung, Hamish Meffin, Kate Fox, Khatereh Edalati, Athavan Nadarajah, Steven Prawer, Michael R. Ibbotson, David. J Garrett. High Fidelity Bidirectional Neural Interfacing with Carbon Fiber Microelectrodes Coated with Boron‐Doped Carbon Nanowalls: An Acute Study. Advanced Functional Materials 2020, 30 (52) https://doi.org/10.1002/adfm.202006101
    89. Valentin Saunier, Emmanuel Flahaut, Marie-Charline Blatché, Christian Bergaud, Ali Maziz. Carbon nanofiber-PEDOT composite films as novel microelectrode for neural interfaces and biosensing. Biosensors and Bioelectronics 2020, 165 , 112413. https://doi.org/10.1016/j.bios.2020.112413
    90. Dong-Hyun Baek, Seungjoon Ahn, Ho Seob Kim, Dae Wook Kim. Fabrication of Donut-Type Neural Electrode for Visual Information as Well as Surface Electrical Stimulation. Journal of Medical and Biological Engineering 2020, 40 (5) , 630-638. https://doi.org/10.1007/s40846-020-00540-9
    91. Korkut Terkan, Francisco Zurita, Touba Jamal Khalaf, Philipp Rinklin, Tetsuhiko Teshima, Tobias Kohl, Bernhard Wolfrum. Soft peripheral nerve interface made from carbon nanotubes embedded in silicone. APL Materials 2020, 8 (10) https://doi.org/10.1063/5.0021887
    92. Zaid Aqrawe, Nitish Patel, Yukti Vyas, Mahima Bansal, Johanna Montgomery, Jadranka Travas-Sejdic, Darren Svirskis, . A simultaneous optical and electrical in-vitro neuronal recording system to evaluate microelectrode performance. PLOS ONE 2020, 15 (8) , e0237709. https://doi.org/10.1371/journal.pone.0237709
    93. S. I. Dorovskikh, D. D. Klyamer, T. P. Koretskaya, D. B. Kal′nyi, N. B. Morozova. STUDYING THE MICROSTRUCTURE OF Pt LAYERS PREPARED BY CHEMICAL VAPOR DEPOSITION IN THE PRESENCE OF HYDROGEN. Journal of Structural Chemistry 2020, 61 (8) , 1211-1218. https://doi.org/10.1134/S0022476620080053
    94. Saeid Aslnejad, Morteza Nasiri, Farhang Abbasi, Hamed Abdipour. Preparation of MWCNT/PDMS Conductive Micro-Patterned Nanocomposites. Macromolecular Research 2020, 28 (8) , 733-738. https://doi.org/10.1007/s13233-020-8095-z
    95. Luigi Pavone, Slavianka Moyanova, Federica Mastroiacovo, Laura Fazi, Carla Busceti, Anderson Gaglione, Katiuscia Martinello, Sergio Fucile, Domenico Bucci, Anna Prioriello, Ferdinando Nicoletti, Francesco Fornai, Piero Morales, Roberto Senesi. Chronic neural interfacing with cerebral cortex using single-walled carbon nanotube-polymer grids. Journal of Neural Engineering 2020, 17 (3) , 036032. https://doi.org/10.1088/1741-2552/ab98db
    96. William J. Watterson, Saba Moslehi, Conor Rowland, Kara M. Zappitelli, Julian H. Smith, David Miller, Julie E. Chouinard, Stephen L. Golledge, Richard P. Taylor, Maria-Thereza Perez, Benjamín J. Alemán. The Roles of an Aluminum Underlayer in the Biocompatibility and Mechanical Integrity of Vertically Aligned Carbon Nanotubes for Interfacing with Retinal Neurons. Micromachines 2020, 11 (6) , 546. https://doi.org/10.3390/mi11060546
    97. Mulaine Shih, Chia-Tung Kuo, Min-Hsuan Lin, Yung-Jen Chuang, Hsin Chen, Tri-Rung Yew. A 3D-CNT micro-electrode array for zebrafish ECG study including directionality measurement and drug test. Biocybernetics and Biomedical Engineering 2020, 40 (2) , 701-708. https://doi.org/10.1016/j.bbe.2020.02.008
    98. Xuefei Shen, Yu Zhao, Qian Li, Tao Chen. Construction and electrochemical properties determination of carbon nanotubes/porous-network carbon micron tubes/silk fibroin composite film neural electrode. AIP Advances 2020, 10 (4) https://doi.org/10.1063/5.0003595
    99. Pengju Li, Hashina Parveen Anwar Ali, Wen Cheng, Jingyi Yang, Benjamin C. K. Tee. Bioinspired Prosthetic Interfaces. Advanced Materials Technologies 2020, 5 (3) https://doi.org/10.1002/admt.201900856
    100. Manping Jia, Marco Rolandi. Soft and Ion‐Conducting Materials in Bioelectronics: From Conducting Polymers to Hydrogels. Advanced Healthcare Materials 2020, 9 (5) https://doi.org/10.1002/adhm.201901372
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect