ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Graphene-Enabled Silver Nanoantenna Sensors

View Author Information
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
Cite this: Nano Lett. 2012, 12, 8, 4090–4094
Publication Date (Web):July 15, 2012
https://doi.org/10.1021/nl301555t
Copyright © 2012 American Chemical Society

    Article Views

    4662

    Altmetric

    -

    Citations

    163
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Silver is the ideal material for plasmonics because of its low loss at optical frequencies but is often replaced by a more lossy metal, gold. This is because of silver’s tendency to tarnish and roughen, forming Ag2S on its surface, dramatically diminishing optical properties and rendering it unreliable for applications. By passivating the surface of silver nanostructures with monolayer graphene, atmospheric sulfur containing compounds are unable to penetrate the graphene to degrade the surface of the silver. Preventing this sulfidation eliminates the increased material damping and scattering losses originating from the unintentional Ag2S layer. Because it is atomically thin, graphene does not interfere with the ability of localized surface plasmons to interact with the environment in sensing applications. Furthermore, after 30 days graphene-passivated silver (Ag–Gr) nanoantennas exhibit a 2600% higher sensitivity over that of bare Ag nanoantennas and 2 orders of magnitude improvement in peak width endurance. By employing graphene in this manner, the excellent optical properties and large spectral range of silver can be functionally utilized in a variety of nanoscale plasmonic devices and applications.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Supplemental Figures S1–S6. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 163 publications.

    1. N. N. Kurus, I. A. Milekhin, N. A. Nebogatikova, I. V. Antonova, E. E. Rodyakina, A. G. Milekhin, A. V. Latyshev, D. R. T. Zahn. Plasmon-Enhanced Raman Scattering by Multilayered Graphene at the Micro- and Nanoscale: SERS and TERS Analysis. The Journal of Physical Chemistry C 2023, 127 (10) , 5013-5020. https://doi.org/10.1021/acs.jpcc.2c07972
    2. Thanyada Sukmanee, Sanpon Vantasin, Harnchana Gatemala, Sanong Ekgasit, Prompong Pienpinijtham, Yukihiro Ozaki. 3D SERS Imaging of Nanoporous Gold–Silver Microstructures: Exploring the Formation Mechanism Based on Galvanic Replacement Reaction. The Journal of Physical Chemistry C 2022, 126 (12) , 5617-5627. https://doi.org/10.1021/acs.jpcc.1c10295
    3. Arin S. Preston, Robert A. Hughes, Nathaniel L. Dominique, Jon P. Camden, Svetlana Neretina. Stabilization of Plasmonic Silver Nanostructures with Ultrathin Oxide Coatings Formed Using Atomic Layer Deposition. The Journal of Physical Chemistry C 2021, 125 (31) , 17212-17220. https://doi.org/10.1021/acs.jpcc.1c04599
    4. Hao Chen, Gaurav Singhal, Frank Neubrech, Runyu Liu, Joshua S. Katz, Scott Matteucci, Steven G. Arturo, Daniel Wasserman, Harald Giessen, Paul V. Braun. Measuring Molecular Diffusion Through Thin Polymer Films with Dual-Band Plasmonic Antennas. ACS Nano 2021, 15 (6) , 10393-10405. https://doi.org/10.1021/acsnano.1c02701
    5. Jiling Zhang, Liangwei Lu, Zhi-Ling Song, Wenjuan Song, Zhuolin Fu, Qiqi Chao, Gao-Chao Fan, Zhuo Chen, Xiliang Luo. Covalent Amide-Bonded Nanoflares for High-Fidelity Intracellular Sensing and Targeted Therapy: A Superstable Nanosystem Free of Nonspecific Interferences. Analytical Chemistry 2021, 93 (22) , 7879-7888. https://doi.org/10.1021/acs.analchem.1c00391
    6. Ilia L. Rasskazov, Vadim I. Zakomirnyi, Anton D. Utyushev, P. Scott Carney, Alexander Moroz. Remarkable Predictive Power of the Modified Long Wavelength Approximation. The Journal of Physical Chemistry C 2021, 125 (3) , 1963-1971. https://doi.org/10.1021/acs.jpcc.0c09774
    7. Sopan N. Nangare, Pravin O. Patil. Affinity-Based Nanoarchitectured Biotransducer for Sensitivity Enhancement of Surface Plasmon Resonance Sensors for In Vitro Diagnosis: A Review. ACS Biomaterials Science & Engineering 2021, 7 (1) , 2-30. https://doi.org/10.1021/acsbiomaterials.0c01203
    8. Marzia Ferrera, Michele Magnozzi, Maurizio Canepa, Francesco Bisio. Thermoplasmonics of Ag Nanoparticles in a Variable-Temperature Bath. The Journal of Physical Chemistry C 2020, 124 (31) , 17204-17210. https://doi.org/10.1021/acs.jpcc.0c04085
    9. Hyunho Kang, Joseph T. Buchman, Rebeca S. Rodriguez, Hattie L. Ring, Jiayi He, Kyle C. Bantz, Christy L. Haynes. Stabilization of Silver and Gold Nanoparticles: Preservation and Improvement of Plasmonic Functionalities. Chemical Reviews 2019, 119 (1) , 664-699. https://doi.org/10.1021/acs.chemrev.8b00341
    10. Xingang Zhang, Shuyao Si, Xiaolei Zhang, Wei Wu, Xiangheng Xiao, and Changzhong Jiang . Improved Thermal Stability of Graphene-Veiled Noble Metal Nanoarrays as Recyclable SERS Substrates. ACS Applied Materials & Interfaces 2017, 9 (46) , 40726-40733. https://doi.org/10.1021/acsami.7b13708
    11. Mario Scuderi, Marco Esposito, Francesco Todisco, Daniela Simeone, Iolena Tarantini, Luisa De Marco, Milena De Giorgi, Giuseppe Nicotra, Luigi Carbone, Daniele Sanvitto, Adriana Passaseo, Giuseppe Gigli, and Massimo Cuscunà . Nanoscale Study of the Tarnishing Process in Electron Beam Lithography-Fabricated Silver Nanoparticles for Plasmonic Applications. The Journal of Physical Chemistry C 2016, 120 (42) , 24314-24323. https://doi.org/10.1021/acs.jpcc.6b03963
    12. Kwanghyun Kim, Jeongyeop Lee, Gyeongcheon Jo, Seungmin Shin, Jin-Baek Kim, and Ji-Hyun Jang . Dendrimer-Capped Gold Nanoparticles for Highly Reliable and Robust Surface Enhanced Raman Scattering. ACS Applied Materials & Interfaces 2016, 8 (31) , 20379-20384. https://doi.org/10.1021/acsami.6b05710
    13. Minah Lee, Jong Uk Kim, Ki Joong Lee, SooHoon Ahn, Yong-Beom Shin, Jonghwa Shin, and Chan Beum Park . Aluminum Nanoarrays for Plasmon-Enhanced Light Harvesting. ACS Nano 2015, 9 (6) , 6206-6213. https://doi.org/10.1021/acsnano.5b01541
    14. Sencer Ayas, Ahmet Emin Topal, Andi Cupallari, Hasan Güner, Gokhan Bakan, and Aykutlu Dana . Exploiting Native Al2O3 for Multispectral Aluminum Plasmonics. ACS Photonics 2014, 1 (12) , 1313-1321. https://doi.org/10.1021/ph500330x
    15. Zhi-Ling Song, Zhuo Chen, Xia Bian, Li-Yi Zhou, Ding Ding, Hao Liang, Yu-Xiu Zou, Shan-Shan Wang, Long Chen, Chao Yang, Xiao-Bing Zhang, and Weihong Tan . Alkyne-Functionalized Superstable Graphitic Silver Nanoparticles for Raman Imaging. Journal of the American Chemical Society 2014, 136 (39) , 13558-13561. https://doi.org/10.1021/ja507368z
    16. Francesco Bisio, Remo Proietti Zaccaria, Riccardo Moroni, Giulia Maidecchi, Alessandro Alabastri, Grazia Gonella, Angelo Giglia, Laura Andolfi, Stefano Nannarone, Lorenzo Mattera, and Maurizio Canepa . Pushing the High-Energy Limit of Plasmonics. ACS Nano 2014, 8 (9) , 9239-9247. https://doi.org/10.1021/nn503035b
    17. Mustafa Balcioglu, Muhit Rana, Neil Robertson, and Mehmet V. Yigit . DNA-Length-Dependent Quenching of Fluorescently Labeled Iron Oxide Nanoparticles with Gold, Graphene Oxide and MoS2 Nanostructures. ACS Applied Materials & Interfaces 2014, 6 (15) , 12100-12110. https://doi.org/10.1021/am503553h
    18. Qiushi Guo, Hai Zhu, Feng Liu, Alexander Y. Zhu, Jason C Reed, Fei Yi, and Ertugrul Cubukcu . Silicon-on-Glass Graphene-Functionalized Leaky Cavity Mode Nanophotonic Biosensor. ACS Photonics 2014, 1 (3) , 221-227. https://doi.org/10.1021/ph400073w
    19. Houshen Li, Haibing Xia, Wenchao Ding, Yijing Li, Qiurong Shi, Dayang Wang, and Xutang Tao . Synthesis of Monodisperse, Quasi-Spherical Silver Nanoparticles with Sizes Defined by the Nature of Silver Precursors. Langmuir 2014, 30 (9) , 2498-2504. https://doi.org/10.1021/la4047148
    20. Jun-Wei Yang, Xiang-Rong Chen, and Bo Song . Interaction of Graphene-on-Al(111) Composite with d-Glucopyranose and Its Application in Biodetection. The Journal of Physical Chemistry C 2013, 117 (16) , 8475-8480. https://doi.org/10.1021/jp311959g
    21. Sebastian Heeg, Roberto Fernandez-Garcia, Antonios Oikonomou, Fred Schedin, Rohit Narula, Stefan A. Maier, Aravind Vijayaraghavan, and Stephanie Reich . Polarized Plasmonic Enhancement by Au Nanostructures Probed through Raman Scattering of Suspended Graphene. Nano Letters 2013, 13 (1) , 301-308. https://doi.org/10.1021/nl3041542
    22. Hoang Duy Minh, Nguyen Duc Thang, Nguyen Thao Linh Chi, Luong Duc Anh, Le Ngoc Long, Tran Van Khai, Huynh Cong Khanh, Nguyen Dang Khoa, Tran Hoang Minh. Hybrid SERS substrate based on cotton swab for sensitive detection of organic molecules. Materials Research Express 2024, 11 (2) , 025002. https://doi.org/10.1088/2053-1591/ad194a
    23. N. N. Kurus, V. Kalinin, N. A. Nebogatikova, I. A. Milekhin, I. V. Antonova, E. E. Rodyakina, A. G. Milekhin, A. V. Latyshev, D. R. T. Zahn. Resonant Raman scattering on graphene: SERS and gap-mode TERS. RSC Advances 2024, 14 (6) , 3667-3674. https://doi.org/10.1039/D3RA07018B
    24. Li Song, Ying Wang, Ming Yang, Yan Huang. Investigation on stability of silver nanoparticles with different ligands. Journal of Nanoparticle Research 2023, 25 (12) https://doi.org/10.1007/s11051-023-05910-3
    25. J. Gokulakrishnan, Kamakshi Koppole, R. Rugmini, K. C. Sekhar. Green synthesis of carbon dots-functionalized silver nanoparticles for SERS-based detection of thiram fungicide. Applied Physics A 2023, 129 (11) https://doi.org/10.1007/s00339-023-07038-6
    26. Chang Guo, Jingyue Yu, Shikai Deng. Hybrid Metasurfaces of Plasmonic Lattices and 2D Materials. Advanced Functional Materials 2023, 33 (42) https://doi.org/10.1002/adfm.202302265
    27. Xinyu Wen, Shikai Deng. Plasmonic Nanostructure Lattices for High‐Performance Sensing. Advanced Optical Materials 2023, 11 (16) https://doi.org/10.1002/adom.202300401
    28. S. Kavitha, K.V.S.S.S.S. Sairam, Ashish Singh. Plasmonic equi-triangular slot loaded bowtie nano-antenna for quantum optical wireless communication. Photonics and Nanostructures - Fundamentals and Applications 2023, 55 , 101153. https://doi.org/10.1016/j.photonics.2023.101153
    29. Xiaojuan She, Haiyang Huang, Yingxuan Zhao, Han Liao, Junbo Zhu, Yang Li, Rui Huang, Hongbao Liu, Zhen Sheng, Fuwan Gan. High-efficiency and CMOS compatible out-of-plane light emission based on a silicon coupler. Applied Optics 2023, 62 (7) , 1662. https://doi.org/10.1364/AO.472979
    30. Jéssica E.S. Fonsaca, Mateus P. Moreira, Sajid Farooq, Renato E. de Araujo, Christiano J.S. de Matos, Daniel Grasseschi. Surface Plasmon Resonance Platforms for Chemical and Bio-Sensing. 2023, 316-353. https://doi.org/10.1016/B978-0-12-822548-6.00036-4
    31. Kavitha S., Kanduri V S S S S Sairam, Ashish Singh, Sheo Kumar Mishra. Flower shaped gap tuned plasmonic nano-antenna for optical wireless communication. Journal of Optical Communications 2022, Article ASAP.
    32. Mohammad Tavakkoli Yaraki, Anastasiia Tukova, Yuling Wang. Emerging SERS biosensors for the analysis of cells and extracellular vesicles. Nanoscale 2022, 14 (41) , 15242-15268. https://doi.org/10.1039/D2NR03005E
    33. Mohamed El barghouti, Oumaima Haidar, Abdellatif Akjouj, Abdellah Mir. Figure of merit and sensitivity enhancement of biosensor LSPR in investigated for visible and near infrared. Photonics and Nanostructures - Fundamentals and Applications 2022, 50 , 101016. https://doi.org/10.1016/j.photonics.2022.101016
    34. Gábor Piszter, György Molnár, András Pálinkás, Zoltán Osváth. Graphene-Encapsulated Silver Nanoparticles for Plasmonic Vapor Sensing. Nanomaterials 2022, 12 (14) , 2473. https://doi.org/10.3390/nano12142473
    35. Hung Ji Huang, Han-Wei Chang, Chia-Yen Lee, Ming-Hua Shiao, Yen-Ling Chiu, Pee-Yew Lee, Yung-Sheng Lin. Effect of synthesis time on plasmonic properties of Ag dendritic nanoforests. IUCrJ 2022, 9 (3) , 355-363. https://doi.org/10.1107/S2052252522002901
    36. B. M. Azizur Rahman, Charusluk Viphavakit, Ratchapak Chitaree, Souvik Ghosh, Akhilesh Kumar Pathak, Sneha Verma, Natsima Sakda. Optical Fiber, Nanomaterial, and THz-Metasurface-Mediated Nano-Biosensors: A Review. Biosensors 2022, 12 (1) , 42. https://doi.org/10.3390/bios12010042
    37. Mohammad Mahdi Ghods, Majid Afsahi. Quad-band tunable graphene-based metamaterial absorber operating at THz frequencies. Optical and Quantum Electronics 2021, 53 (10) https://doi.org/10.1007/s11082-021-03228-9
    38. Hongbo Wang, Yuqing Liu, Gaofeng Rao, Yang Wang, Xinchuan Du, Anjun Hu, Yin Hu, Chuanhui Gong, Xianfu Wang, Jie Xiong. Coupling enhancement mechanisms, materials, and strategies for surface-enhanced Raman scattering devices. The Analyst 2021, 146 (16) , 5008-5032. https://doi.org/10.1039/D1AN00624J
    39. Devendra Kumar, Rudramani Tiwari, Rajiv Kumar Patel, Pubali Adhikary, S. Krishnamoorthi. One-pot synthesis of electroconducting graphene coated silver nanoparticles from silver acetylide. Journal of Nanoparticle Research 2021, 23 (8) https://doi.org/10.1007/s11051-021-05291-5
    40. Guangyu Du, Xiaozhi Bao, Shenghuang Lin, Huan Pang, Shivananju Bannur Nanjunda, Qiaoliang Bao. Infrared Polaritonic Biosensors Based on Two-Dimensional Materials. Molecules 2021, 26 (15) , 4651. https://doi.org/10.3390/molecules26154651
    41. Qilin Duan, Yineng Liu, Shanshan Chang, Huanyang Chen, Jin-hui Chen. Surface Plasmonic Sensors: Sensing Mechanism and Recent Applications. Sensors 2021, 21 (16) , 5262. https://doi.org/10.3390/s21165262
    42. Hung Ji Huang, Ming-Hua Shiao, Yang-Wei Lin, Bei-Ju Lin, James Su, Yung-Sheng Lin, Han-Wei Chang. Au@Ag Dendritic Nanoforests for Surface-Enhanced Raman Scattering Sensing. Nanomaterials 2021, 11 (7) , 1736. https://doi.org/10.3390/nano11071736
    43. Hikari Kitadai, Meng Yuan, Yongqiang Ma, Xi Ling. Graphene-Based Environmental Sensors: Electrical and Optical Devices. Molecules 2021, 26 (8) , 2165. https://doi.org/10.3390/molecules26082165
    44. Yuanyuan Xu, Xingguo Gao, Cheng Yang, Baoyuan Man, Jiancai Leng. Fork-shaped paper SERS sensors coated with raspberry-like bimetallic nanospheres for the detection of the boosted mixture: experimental design and applications. Journal of Materials Chemistry C 2021, 9 (8) , 2763-2774. https://doi.org/10.1039/D0TC04646A
    45. Xuhua Zhao, Suya Zhao, Zhi-Ling Song, Xuanhao Zhang, Shi Zhang, Wenjuan Song, Zhuo Chen. Alkyne functionalized graphene-isolated-Au-nanocrystal for the ratiometric SERS sensing of alkaline phosphatase with acetonitrile solvent as an internal standard. Sensors and Actuators B: Chemical 2021, 331 , 129373. https://doi.org/10.1016/j.snb.2020.129373
    46. Xiaoyuan Lu. Narrowband Absorption Platform Based on Graphene and Oblique Incidence in the Infrared Range. Journal of Lightwave Technology 2021, 39 (5) , 1530-1536. https://doi.org/10.1109/JLT.2020.3038070
    47. Shima Poorgholam-Khanjari, Ferdows B. Zarrabi. Reconfigurable Vivaldi THz antenna based on graphene load as hyperbolic metamaterial for skin cancer spectroscopy. Optics Communications 2021, 480 , 126482. https://doi.org/10.1016/j.optcom.2020.126482
    48. S. Narjes Abdollahi, Efraín Ochoa Martínez, Cédric Kilchoer, Geoffroy Kremer, Thomas Jaouen, Philipp Aebi, Tim Hellmann, Thomas Mayer, Yibei Gu, Ulrich B. Wiesner, Ullrich Steiner, Bodo D. Wilts, Ilja Gunkel. Carbon‐Assisted Stable Silver Nanostructures. Advanced Materials Interfaces 2020, 7 (23) https://doi.org/10.1002/admi.202001227
    49. Vimarsh Awasthi, Richa Goel, Shilpi Agarwal, Padmnabh Rai, Satish Kumar Dubey. Optical nanoantenna for beamed and surface‐enhanced Raman spectroscopy. Journal of Raman Spectroscopy 2020, 51 (11) , 2121-2145. https://doi.org/10.1002/jrs.5932
    50. Zhonglei Shen, Matthew Becton, Donghai Han, Xiangdong Fang, Xianqiao Wang, Liuyang Zhang, Xuefeng Chen. Terahertz plasmonic nanotrapping with graphene coaxial apertures. Physical Review A 2020, 102 (5) https://doi.org/10.1103/PhysRevA.102.053507
    51. Mohamed El barghouti, Abdellatif Akjouj, Abdellah Mir. Design of silver nanoparticles with graphene coatings layers used for LSPR biosensor applications. Vacuum 2020, 180 , 109497. https://doi.org/10.1016/j.vacuum.2020.109497
    52. Zoltán Osváth, András Pálinkás, Gábor Piszter, György Molnár. Synthesis and Characterization of Graphene–Silver Nanoparticle Hybrid Materials. Materials 2020, 13 (20) , 4660. https://doi.org/10.3390/ma13204660
    53. Cleumar Moreira, Yunshan Wang, Steve Blair, Ember Chadwick, Ji-Young Lee, Leiva Oliveira, Antonio Lima, Rossana Cruz. Approaches for deep-ultraviolet surface plasmon resonance sensors. Optics Letters 2020, 45 (16) , 4642. https://doi.org/10.1364/OL.397641
    54. Bin Wang, Subhash C. Singh, Huanyu Lu, Chunlei Guo. Design of Aluminum Bowtie Nanoantenna Array with Geometrical Control to Tune LSPR from UV to Near-IR for Optical Sensing. Plasmonics 2020, 15 (3) , 609-621. https://doi.org/10.1007/s11468-019-01071-z
    55. Phung Nhat Minh, Van-Tuan Hoang, Ngo Xuan Dinh, Ong Van Hoang, Nguyen Van Cuong, Dang Thi Bich Hop, Tran Quoc Tuan, Nguyen Tien Khi, Tran Quang Huy, Anh-Tuan Le. Reduced graphene oxide-wrapped silver nanoparticles for applications in ultrasensitive colorimetric detection of Cr( vi ) ions and the carbaryl pesticide. New Journal of Chemistry 2020, 44 (18) , 7611-7620. https://doi.org/10.1039/D0NJ00947D
    56. Michael B. Cortie, Matthew D. Arnold, Vicki J. Keast. The Quest for Zero Loss: Unconventional Materials for Plasmonics. Advanced Materials 2020, 32 (18) https://doi.org/10.1002/adma.201904532
    57. Qianyun Bin, Min Wang, Lishi Wang. Ag nanoparticles decorated into metal-organic framework (Ag NPs/ZIF-8) for electrochemical sensing of chloride ion. Nanotechnology 2020, 31 (12) , 125601. https://doi.org/10.1088/1361-6528/ab5cde
    58. Mohamed El Barghouti, Abdellatif Akjouj, Abdellah Mir. Enhancement of localized surface plasmon resonances of silver nanoparticles array upon the presence of graphene coatings: LSPR biosensor. IOP Conference Series: Materials Science and Engineering 2020, 783 (1) , 012023. https://doi.org/10.1088/1757-899X/783/1/012023
    59. Vivek Garg, Bhaveshkumar Kamaliya, Rakesh G. Mote, Jing Fu. Enhanced light-matter interactions in size tunable graphene-gold nanomesh. MRS Communications 2020, 10 (1) , 135-140. https://doi.org/10.1557/mrc.2019.162
    60. Zaka Ullah, Gunawan Witjaksono, Illani Nawi, Nelson Tansu, Muhammad Irfan Khattak, Muhammad Junaid. A Review on the Development of Tunable Graphene Nanoantennas for Terahertz Optoelectronic and Plasmonic Applications. Sensors 2020, 20 (5) , 1401. https://doi.org/10.3390/s20051401
    61. Stephen Sanders, Alejandro Manjavacas. Nanoantennas with balanced gain and loss. Nanophotonics 2020, 9 (2) , 473-480. https://doi.org/10.1515/nanoph-2019-0392
    62. Junqiang Hu, Longlai Yang, Yan Zhu, De-Quan Yang, Edward Sacher. Destabilization of PVA-stabilized Ag NPs: color changes at low aqueous concentrations, induced by aggregation and coalescence. Materials Research Express 2020, 7 (2) , 025003. https://doi.org/10.1088/2053-1591/ab6c90
    63. Akanksha R. Shelke, Jaideep Balwada, Shubham Sharma, Ajay D. Pingale, Sachin U. Belgamwar, Jitendra S. Rathore. Development and characterization of Cu-Gr composite coatings by electro-co-deposition technique. Materials Today: Proceedings 2020, 28 , 2090-2095. https://doi.org/10.1016/j.matpr.2020.03.244
    64. Qilin Hong, Jie Luo, Chunchao Wen, Jianfa Zhang, Zhihong Zhu, Shiqiao Qin, Xiaodong Yuan. Hybrid metal-graphene plasmonic sensor for multi-spectral sensing in both near- and mid-infrared ranges. Optics Express 2019, 27 (24) , 35914. https://doi.org/10.1364/OE.27.035914
    65. Tingting Wu, Kaiwei Li, Nan Zhang, Juan Xia, Qingsheng Zeng, Xinglin Wen, Unnimadhavakurup S. Dinish, Malini Olivo, Zexiang Shen, Zheng Liu, Qihua Xiong, Yu Luo, Stefan A. Maier, Lei Wei. Ultrawideband Surface Enhanced Raman Scattering in Hybrid Graphene Fragmented‐Gold Substrates via Cold‐Etching. Advanced Optical Materials 2019, 7 (21) https://doi.org/10.1002/adom.201900905
    66. Priscila Oliveira de Jesus, Vitaly F. Rodriguez-Esquerre, , . Analysis of graphene and sulfide coated surface plasmon resonance biosensors. 2019, 102. https://doi.org/10.1117/12.2530113
    67. Pravin O. Patil, Gaurav R. Pandey, Ashwini G. Patil, Vivek B. Borse, Prashant K. Deshmukh, Dilip R. Patil, Rahul S. Tade, Sopan N. Nangare, Zamir G. Khan, Arun M. Patil, Mahesh P. More, Murugan Veerapandian, Sanjay B. Bari. Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review. Biosensors and Bioelectronics 2019, 139 , 111324. https://doi.org/10.1016/j.bios.2019.111324
    68. Hongki Kim, Hyejeong Jang, Jeong Moon, Jihyun Byun, Jinyoung Jeong, Juyeon Jung, Eun‐Kyung Lim, Taejoon Kang. Metal–Organic Framework Coating for the Preservation of Silver Nanowire Surface‐Enhanced Raman Scattering Platform. Advanced Materials Interfaces 2019, 6 (13) https://doi.org/10.1002/admi.201900427
    69. Yi Xu, Ping Bai, Xiaodong Zhou, Yuriy Akimov, Ching Eng Png, Lay‐Kee Ang, Wolfgang Knoll, Lin Wu. Optical Refractive Index Sensors with Plasmonic and Photonic Structures: Promising and Inconvenient Truth. Advanced Optical Materials 2019, 7 (9) https://doi.org/10.1002/adom.201801433
    70. Eden Morales‐Narváez, Arben Merkoçi. Graphene Oxide as an Optical Biosensing Platform: A Progress Report. Advanced Materials 2019, 31 (6) https://doi.org/10.1002/adma.201805043
    71. Jason A. Varnell, Mete Bakir, Angela M. DiAscro, Xinyi Chen, Sabrina Nilufar, Iwona Jasiuk, Andrew A. Gewirth. Understanding the influence of carbon addition on the corrosion behavior and mechanical properties of Al alloy “covetics”. Journal of Materials Science 2019, 54 (3) , 2668-2679. https://doi.org/10.1007/s10853-018-2998-5
    72. Shohreh Nouri Novin, Ferdows B. Zarrabi, Maryam Bazgir, Samaneh Heydari, Sepideh Ebrahimi. Field Enhancement in Metamaterial Split Ring Resonator Aperture Nano-Antenna with Spherical Nano-Particle Arrangement. Silicon 2019, 11 (1) , 293-300. https://doi.org/10.1007/s12633-018-9854-8
    73. Hesam Heydarian, Payam Yazdanfar, Afsaneh Shahmansouri, Bizhan Rashidian. Tunable wide-band graphene plasmonic nano-color-sorter: application in scanning near-field optical microscopy. Journal of the Optical Society of America B 2019, 36 (2) , 435. https://doi.org/10.1364/JOSAB.36.000435
    74. Raed Alharbi, Mehrdad Irannejad, Mustafa Yavuz. A Short Review on the Role of the Metal-Graphene Hybrid Nanostructure in Promoting the Localized Surface Plasmon Resonance Sensor Performance. Sensors 2019, 19 (4) , 862. https://doi.org/10.3390/s19040862
    75. Yuwei Chen, Li-an Bian, Peiguo Liu, Gaosheng Li, Yuchen Xie. Controlling light absorption and transmission in graphene-embedded structure with Fano resonance and FP resonance. Superlattices and Microstructures 2018, 124 , 185-191. https://doi.org/10.1016/j.spmi.2018.09.034
    76. Sakura Origuchi, Mai Kishimoto, Michito Yoshizawa, Soichiro Yoshimoto. A Supramolecular Approach to the Preparation of Nanographene Adlayers Using Water‐Soluble Molecular Capsules. Angewandte Chemie 2018, 130 (47) , 15707-15711. https://doi.org/10.1002/ange.201809258
    77. Sakura Origuchi, Mai Kishimoto, Michito Yoshizawa, Soichiro Yoshimoto. A Supramolecular Approach to the Preparation of Nanographene Adlayers Using Water‐Soluble Molecular Capsules. Angewandte Chemie International Edition 2018, 57 (47) , 15481-15485. https://doi.org/10.1002/anie.201809258
    78. Erika Rodríguez‐Sevilla, Gloria Verónica Vázquez, Eden Morales‐Narváez. Simple, Flexible, and Ultrastable Surface Enhanced Raman Scattering Substrate Based on Plasmonic Nanopaper Decorated with Graphene Oxide. Advanced Optical Materials 2018, 6 (19) https://doi.org/10.1002/adom.201800548
    79. Kai He, Zhuotong Zeng, Anwei Chen, Guangming Zeng, Rong Xiao, Piao Xu, Zhenzhen Huang, Jiangbo Shi, Liang Hu, Guiqiu Chen. Advancement of Ag–Graphene Based Nanocomposites: An Overview of Synthesis and Its Applications. Small 2018, 14 (32) https://doi.org/10.1002/smll.201800871
    80. Rana Nicolas, Gaëtan Lévêque, Pierre-Michel Adam, Thomas Maurer. Graphene Doping Induced Tunability of Nanoparticles Plasmonic Resonances. Plasmonics 2018, 13 (4) , 1219-1225. https://doi.org/10.1007/s11468-017-0623-0
    81. Anju K. Nair, K.B. Bhavitha, Sreekanth Perumbilavil, Pranitha Sankar, Didier Rouxel, M.S. Kala, Sabu Thomas, Nandakumar Kalarikkal. Multifunctional nitrogen sulfur co-doped reduced graphene oxide – Ag nano hybrids (sphere, cube and wire) for nonlinear optical and SERS applications. Carbon 2018, 132 , 380-393. https://doi.org/10.1016/j.carbon.2018.02.068
    82. Nan Chen, Dihan Hasan, Chong Pei Ho, Chengkuo Lee. Graphene Tunable Plasmon–Phonon Coupling in Mid‐IR Complementary Metamaterial. Advanced Materials Technologies 2018, 3 (5) https://doi.org/10.1002/admt.201800014
    83. Jingyi Zhao, Zhengmin Cao, Yuqing Cheng, Jianning Xu, Te Wen, Aiqin Hu, Qihuang Gong, Guowei Lu. In situ Optical Study of Gold Nanorod Coupling with Graphene. Advanced Optical Materials 2018, 6 (8) https://doi.org/10.1002/adom.201701043
    84. Xiaoguang Liu, Yan Li, Wendong Xue, Juan Ge, Jun Wang, Jialin Sun. 3D nano-arrays of silver nanoparticles and graphene quantum dots with excellent surface-enhanced Raman scattering. Materials Science and Technology 2018, 34 (6) , 679-687. https://doi.org/10.1080/02670836.2017.1410368
    85. Julián L. Pita, Ivan Aldaya, Paulo Dainese, Hugo E. Hernandez-Figueroa, Lucas H. Gabrielli. Design of a compact CMOS-compatible photonic antenna by topological optimization. Optics Express 2018, 26 (3) , 2435. https://doi.org/10.1364/OE.26.002435
    86. Xiao-Yang Zhang, Feng Shan, Huan-Li Zhou, Dan Su, Xiao-Mei Xue, Jing-Yuan Wu, Yu-Zhang Chen, Ning Zhao, Tong Zhang. Silver nanoplate aggregation based multifunctional black metal absorbers for localization, photothermic harnessing enhancement and omnidirectional light antireflection. Journal of Materials Chemistry C 2018, 6 (5) , 989-999. https://doi.org/10.1039/C7TC04486K
    87. Xiao-Yang Zhang, Xiao-Mei Xue, Huan-Li Zhou, Ning Zhao, Feng Shan, Dan Su, Yi-Ran Liu, Tong Zhang. Seeds screening aqueous synthesis, multiphase interfacial separation and in situ optical characterization of invisible ultrathin silver nanowires. Nanoscale 2018, 10 (33) , 15468-15484. https://doi.org/10.1039/C8NR02736F
    88. Medini Padmanabhan, Rachel Meyen, Kerri Houghton, Miles St. John. Solvent Interface Trapping as an Effective Technique to Fabricate Graphite-Nanomaterial Composite Thin Films. MRS Advances 2018, 3 (1-2) , 19-23. https://doi.org/10.1557/adv.2017.621
    89. Puthiya Veetil Nidheesh. Graphene-based materials supported advanced oxidation processes for water and wastewater treatment: a review. Environmental Science and Pollution Research 2017, 24 (35) , 27047-27069. https://doi.org/10.1007/s11356-017-0481-5
    90. Yilin Xu, Haojian Yu, Cong Wang, Jin Cao, Yigang Chen, Zhongquan Ma, Ying You, Jixiang Wan, Xiaohong Fang, Xiaoyuan Chen. Multilayer Graphene with Chemical Modification as Transparent Conducting Electrodes in Organic Light-Emitting Diode. Nanoscale Research Letters 2017, 12 (1) https://doi.org/10.1186/s11671-017-2009-9
    91. Mai O. Sallam, Guy A. E. Vandenbosch, Georges G. E. Gielen, Ezzeldin A. Soliman. Novel Wire-Grid Nano-Antenna Array With Circularly Polarized Radiation for Wireless Optical Communication Systems. Journal of Lightwave Technology 2017, 35 (21) , 4700-4706. https://doi.org/10.1109/JLT.2017.2751674
    92. Yi Huang, Shuncong Zhong. Tunable terahertz plasmonics sensor using doped graphene. 2017, 1-4. https://doi.org/10.1109/UCMMT.2017.8068489
    93. Peng Sun, Feng Xia, Lili Liu, Lipeng Jiao, Kai Chen, Meng Li, Qiyong Liu, Maojin Yun. Tunable graphene-based infrared perfect absorber for sensing. 2017, 83-86. https://doi.org/10.1109/3M-NANO.2017.8286324
    94. Xiaolong Wang, Christian Santschi, Olivier J. F. Martin. Strong Improvement of Long-Term Chemical and Thermal Stability of Plasmonic Silver Nanoantennas and Films. Small 2017, 13 (28) , 1700044. https://doi.org/10.1002/smll.201700044
    95. Shweta Sharma, Varnika Prakash, S.K. Mehta. Graphene/silver nanocomposites-potential electron mediators for proliferation in electrochemical sensing and SERS activity. TrAC Trends in Analytical Chemistry 2017, 86 , 155-171. https://doi.org/10.1016/j.trac.2016.10.004
    96. Young-Kwan Kim, Seongchan Kim, Sung-Pyo Cho, Hongje Jang, Hyun Huh, Byung Hee Hong, Dal-Hee Min. Facile one-pot photosynthesis of stable Ag@graphene oxide nanocolloid core@shell nanoparticles with sustainable localized surface plasmon resonance properties. Journal of Materials Chemistry C 2017, 5 (38) , 10016-10022. https://doi.org/10.1039/C7TC03379F
    97. Juan Li, Dewang Kong, Anjian Xie, Yiping Huang, Fangzhi Huang, Shikuo Li, Yuhua Shen. An Ordered AgNWs@GO-AgNPs Film as the Sensitive, Stable and Multifunctional Surface-Enhanced Raman Scattering Substrate. Journal of The Electrochemical Society 2017, 164 (14) , B747-B752. https://doi.org/10.1149/2.1951713jes
    98. Sencer Ayas, Gokhan Bakan, Aykutlu Dana. Multispectral Plasmonic Structures Using Native Aluminum Oxide and Aluminum. 2017, JTh2A.118. https://doi.org/10.1364/CLEO_AT.2017.JTh2A.118
    99. Yaowu Hu, Prashant Kumar, Yi Xuan, Biwei Deng, Minghao Qi, Gary J. Cheng. Controlled and Stabilized Light–Matter Interaction in Graphene: Plasmonic Film with Large‐Scale 10‐nm Lithography. Advanced Optical Materials 2016, 4 (11) , 1811-1823. https://doi.org/10.1002/adom.201600201
    100. H.M. Iftekhar Jaim, Romaine A. Isaacs, Sergey N. Rashkeev, Maija Kuklja, Daniel P. Cole, Melburne C. LeMieux, Iwona Jasiuk, Sabrina Nilufar, Lourdes G. Salamanca-Riba. Sp2 carbon embedded in Al-6061 and Al-7075 alloys in the form of crystalline graphene nanoribbons. Carbon 2016, 107 , 56-66. https://doi.org/10.1016/j.carbon.2016.05.053
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect