Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ordered nanoparticle arrays formed on engineered chaperonin protein templates

Abstract

Traditional methods for fabricating nanoscale arrays are usually based on lithographic techniques. Alternative new approaches rely on the use of nanoscale templates made of synthetic or biological materials. Some proteins, for example, have been used to form ordered two-dimensional arrays. Here, we fabricated nanoscale ordered arrays of metal and semiconductor quantum dots by binding preformed nanoparticles onto crystalline protein templates made from genetically engineered hollow double-ring structures called chaperonins. Using structural information as a guide, a thermostable recombinant chaperonin subunit was modified to assemble into chaperonins with either 3 nm or 9 nm apical pores surrounded by chemically reactive thiols. These engineered chaperonins were crystallized into two-dimensional templates up to 20 μm in diameter. The periodic solvent-exposed thiols within these crystalline templates were used to size-selectively bind and organize either gold (1.4, 5 or 10nm) or CdSe–ZnS semiconductor (4.5 nm) quantum dots into arrays. The order within the arrays was defined by the lattice of the underlying protein crystal. By combining the self-assembling properties of chaperonins with mutations guided by structural modelling, we demonstrate that quantum dots can be manipulated using modified chaperonins and organized into arrays for use in next-generation electronic and photonic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models depicting the assembly of engineered S. shibatae HSP60s into chaperonin variants.
Figure 2: 2D crystals of engineered chaperonins as quantum dot array templates.
Figure 3: Gold QD binding to engineered chaperonins and chaperonin-templates.
Figure 4: Semiconductor QD arrays.
Figure 5: Chaperonin subunit mediated self-assembled Nanogold arrays.
Figure 6: HAADF STEM imaging of Nanogold arrays.

Similar content being viewed by others

References

  1. Zhirnov, V.V. & Herr, D.J.C. New frontiers: Self-assembly and nanoelectronics. Computer 34, 34–43 (2001).

    Article  Google Scholar 

  2. Xia, Y., Gates, B., Yin, Y. & Lu, Y. Monodispersed colloidal spheres: Old materials with new applications. Adv. Mater. 12, 693–713 (2000).

    Article  CAS  Google Scholar 

  3. Sato, T., Ahmed, H., Brown, D. & Johnson, B.F.G. Single electron transistor using a molecularly linked gold colloidal particle chain J. Appl. Phys. 82, 696–701 (1997).

    Article  CAS  Google Scholar 

  4. Nalwa, H.S. Handbook of Materials and Nanotechnology (Academic, San Diego, 2000).

    Google Scholar 

  5. Likharev, K.K. Single electron devices and their applications. Proc. IEEE 87, 606–632 (1999).

    Article  CAS  Google Scholar 

  6. Thelander, C. et al. Gold nanoparticle single-electron transistor with carbon nanotube leads. Appl. Phys. Lett. 79, 2106–2108 (2001).

    Article  CAS  Google Scholar 

  7. Maier, S.A. et al. Plasmonics - A route to nanoscale optical devices. Adv. Mater. 13, 1501–1505 (2001).

    Article  CAS  Google Scholar 

  8. Maier, S.A., Brongersma, M.L., Kik, P.G. & Atwater, H.A. Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy. Phys. Rev. B 65, 193408 (2002).

    Article  Google Scholar 

  9. Zrenner, A. et al. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature 418, 612–614 (2002).

    Article  CAS  Google Scholar 

  10. Berven, C.A., Clarke, L., Mooster, J.L., Wyborne, M.N. & Hutchison, J.E. Defect-tolerant single-electron charging at room temperature in metal nanoparticle decorated biopolymers. Adv. Mater. 13, 109–113 (2001).

    Article  CAS  Google Scholar 

  11. Park, M., Chaikin, P.M., Register, R.A. & Adamson, D.H. Large area dense nanoscale patterning of arbitrary surfaces. Appl. Phys. Lett. 79, 257–259 (2001).

    Article  CAS  Google Scholar 

  12. Hulteen, J.C. & Duyne, R.P.V. Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces. J. Vac. Sci. Technol. A 1553–1558 (1995).

  13. Richter, J. et al. Nanoscale palladium metallization of DNA. Adv. Mater. 12, 507–510 (2000).

    Article  CAS  Google Scholar 

  14. Keren, K. et al. Sequence-specific molecular lithography on single DNA molecules. Science 297, 72–75 (2002).

    Article  CAS  Google Scholar 

  15. Sleytr, U.B., Messner, P., Pum, D. & Sara, M. Crystalline bacterial cell surface layers (s layers): From supramolecular cell structure to biomimetics and nanotechnology. Angew. Chem. Int. Edn 38, 1034–1054 (1999).

    Article  CAS  Google Scholar 

  16. Douglas, K., Clark, N.A. & Rothschild, K.J. Nanometer molecular lithography. Appl. Phys. Lett. 48, 676–678 (1986).

    Article  CAS  Google Scholar 

  17. Hall, S.R., Shenton, W., Engelhardt, H. & Mann, S. Site-specific organization of gold nanoparticles by biomolecular templating. Chem. Phys. Chem. 3, 184–186 (2001).

    Article  Google Scholar 

  18. Shenton, W., Douglas, T., Young, M., Stubbs, G. & Mann, S. Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv. Mater. 11, 253–256 (1999).

    Article  CAS  Google Scholar 

  19. Douglas, T. & Young, M. Virus particles as templates for materials synthesis. Adv. Mater. 11, 679–681 (1999).

    Article  CAS  Google Scholar 

  20. Douglas, T. & Young, M. Host-guest encapsulation of materials by assembled virus protein cages. Nature 393, 152–155 (1998).

    Article  CAS  Google Scholar 

  21. Wang, Q., Lin, T., Tang, L., Johnson, J.E. & Finn, M.G. Icosahedral virus particles as addressable nanoscale building blocks. Angew. Chem. Int. Edn 41, 459–462 (2002).

    Article  CAS  Google Scholar 

  22. Lee, S.W., Mao, C., Flynn, C.E. & Belcher, A.M. Ordering of quantum dots using genetically engineered viruses. Science 296, 892–895 (2002).

    Article  CAS  Google Scholar 

  23. Yamashita, I. Fabrication of a two-dimensional array of nano-particles using ferritin molecule. Thin Solid Films 393, 12–18 (2001).

    Article  CAS  Google Scholar 

  24. Hartl, F.U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 295, 1852–8 (2002).

    Article  CAS  Google Scholar 

  25. Trent, J.D., Kagawa, H.K., Yaoi, T., Olle, E. & Zaluzec, N.J. Chaperonin filaments: The archaeal cytoskeleton? Proc. Natl. Acad. Sci. USA 94, 5383–5388 (1997).

    Article  CAS  Google Scholar 

  26. Ellis, M.J. et al. Two-dimensional crystallization of the chaperonin TF55 from the hyperthermophilic archaeon Sulfolobus solfataricus. J. Struct. Biol. 123, 30–36 (1998).

    Article  CAS  Google Scholar 

  27. Kagawa, H.K. et al. The 60 kDa heat shock proteins in the hyperthermophilic archaeon Sulfolobus shibatae. J. Mol. Biol. 253, 712–25 (1995).

    Article  CAS  Google Scholar 

  28. Ditzel, L. et al. Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93, 125–38 (1998).

    Article  CAS  Google Scholar 

  29. Xu, Z., Horwich, A.L. & Sigler, P.B. The crystal structure of the asymmetric groEL-groES-(adp)7 chaperonin complex. Nature 388, 741–50 (1997).

    Article  CAS  Google Scholar 

  30. Koeck, P.J.B., Kagawa, H.K., Ellis, M.J., Hebert, H. & Trent, J.D. Two-dimensional crystals of reconstituted β–subunits of the chaperonin TF55 from Sulfolobus shibatae. Biochim. Biophys. Acta 1429, 40–44 (1998).

    Article  CAS  Google Scholar 

  31. Schoehn, G., Quaite-Randall, E., Jimenez, J.L., Joachimiak, A. & Saibil, H.R. Three conformations of an archaeal chaperonin, TF55 from Sulfolobus shibatae. J. Mol. Biol. 296, 813–819 (2000).

    Article  CAS  Google Scholar 

  32. Peitsch, M.C. Protein modeling by e-mail. Bio/Technology 13, 658–660 (1995).

    CAS  Google Scholar 

  33. Guex, N. & Peitsch, M.C. Swiss-model and the swiss-pdbviewer: An environment for comparative protein modelling. Electrophoresis 18, 2714–2723 (1997).

    Article  CAS  Google Scholar 

  34. Guex, N., Diemand, A. & Peitsch, M.C. Protein modelling for all. Trends Biochem. Sci. 24, 364–367 (1999).

    Article  CAS  Google Scholar 

  35. Loweth, C.J., Caldwell, W.B., Peng, X., Alivisatos, A.P. & Schultz, P.G. DNA-based assembly of gold nanocrystals. Angew. Chem. Int. Edn 38, 1808–1812 (1999).

    Article  CAS  Google Scholar 

  36. Novak, J.P., Nickerson, C., Franzen, S. & Feldheim, D.L. Purification of molecularly bridged metal nanoparticle arrays by centrifugation and size exclusion chromatography. Anal. Chem. 73, 5758–5761 (2001).

    Article  CAS  Google Scholar 

  37. Dujardin, E. & Mann, S. Bio-inspired materials chemistry. Adv. Mater. 14, 775–788 (2002).

    Article  CAS  Google Scholar 

  38. Dabbousi, B.O. et al. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101, 9463–9475 (1997).

    Article  CAS  Google Scholar 

  39. Chan, W.C. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).

    Article  CAS  Google Scholar 

  40. Bruchez, M. Jr., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).

    Article  CAS  Google Scholar 

  41. Gerion, D. et al. Synthesis and properties of biocompatible water-soluble silica-coated semiconductor nanocrystals. J. Phys. Chem. B 105, 8861–8871 (2001).

    Article  CAS  Google Scholar 

  42. Whaley, S.R., English, D.S., Hu, E.L., Barbara, P.F. & Belcher, A.M. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405, 665–668 (2000).

    Article  CAS  Google Scholar 

  43. Current Protocols in Molecular Biology (eds Ausubel, F. M. et al.) (Wiley, New york, 1998).

Download references

Acknowledgements

The authors thank A. P. Alivisatos and W. J. Parak for the semiconductor quantum dots, M. Wilson and Y. F. Li for assistance in assembling chaperonin models, A. Madhukar for quantum dot discussions, and R. Boyle and J. Varelas of the NASA BioVis Center for use of the LEO TEM. This work was supported through funding from the NASA Ames Center for Nanotechnology. We also acknowledge funding from the US Department of Energy, the Defense Advanced Research Projects Agency, and the NASA Ames Director's Discretionary Fund. Work at ANL was supported in part by the US DoE BES-MS W-31-109-Eng-38.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Andrew McMillan or Jonathan D. Trent.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMillan, R., Paavola, C., Howard, J. et al. Ordered nanoparticle arrays formed on engineered chaperonin protein templates. Nature Mater 1, 247–252 (2002). https://doi.org/10.1038/nmat775

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat775

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing