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for photoreceptor degeneration: the path 
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Abstract 

Photoreceptors (PRs), as the most abundant and light-sensing cells of the neuroretina, are responsible for converting 
light into electrical signals that can be interpreted by the brain. PR degeneration, including morphological and func‑
tional impairment of these cells, causes significant diminution of the retina’s ability to detect light, with consequent 
loss of vision. Recent findings in ocular regenerative medicine have opened promising avenues to apply neuroprotec‑
tive therapy, gene therapy, cell replacement therapy, and visual prostheses to the challenge of restoring vision. How‑
ever, successful visual restoration in the clinical setting requires application of these therapeutic approaches at the 
appropriate stage of the retinal degeneration. In this review, firstly, we discuss the mechanisms of PR degeneration 
by focusing on the molecular mechanisms underlying cell death. Subsequently, innovations, recent developments, 
and promising treatments based on the stage of disorder progression are further explored. Then, the challenges to be 
addressed before implementation of these therapies in clinical practice are considered. Finally, potential solutions to 
overcome the current limitations of this growing research area are suggested. Overall, the majority of current treat‑
ment modalities are still at an early stage of development and require extensive additional studies, both pre-clinical 
and clinical, before full restoration of visual function in PR degeneration diseases can be realized.
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Photoreceptor degeneration
The neuroretina is a photosensitive membrane located at 
the posterior of the eye. The light-sensing cells, known as 
photoreceptors (PRs), are the most numerous and meta-
bolically demanding cells in the retina. Their metabolism 

is supported by a single-layered retinal pigment epithe-
lium (RPE). PRs are highly polarised retinal neurons, 
each being organised into several compartments, includ-
ing the outer segment (OS), the inner segment (IS), the 
nucleus, and a short axon [1, 2]. These light-sensing cells 
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are classified into rods and cones based on their mor-
phology, as well as their activity profile in bright or dim 
light. Rod photoreceptors (rods) provide vision under low 
light conditions, whereas cones are responsible for colour 
and daylight vision [3]. Loss of PRs and/or their function-
alities impairs the ability to detect light as in inherited 
and acquired PR degenerations [4, 5]. The former reveals 
itself during childhood while the latter appears later in 
life possible due to environmental stresses, drug toxicity, 
and ageing [4].

Age-related macular degeneration (AMD) is the most 
common form of acquired PR degeneration [3]. In con-
trast, proliferative vitreoretinopathy (PVR) is another 
type of common retinal pathology that occurs following 
retinal detachment and can involve PR degeneration, 
although that is secondary to the causative mechanism 
[6]. The inherited forms of PR degeneration are induced 
by mutations in one, or more, of the many identified or 
unidentified genes and loci. Until now, more than 300 dif-
ferent genes have been identified, and new genes and loci 
continue to be discovered [7]. Retinitis pigmentosa (RP), 
achromatopsia, Leber’s congenital amaurosis (LCA), 
and Stargardt disease (STGD) are prominent forms of 
inherited retinal diseases (IRD). Visual deficits can be 
brought about by an acquired or inherited degenerative 
process endogenous to the retina, as is typical for PR dys-
trophies, but it is important to note that RPE-associated 
processes can also play a role, as in AMD [8]. As loss of 
vision in inherited and acquired PR degeneration are 
inflicted through different molecular mechanisms, iden-
tifying the specific mechanisms involved could provide 
new therapeutic approaches for the treatment of retinal 
degeneration.

Molecular pathways involved in PR degeneration
There is a growing body of literature implicating the 
endoplasmic reticulum (ER) and mitochondria in PR cell 
death [2, 9]. The ER is a critical cellular organelle and 
plays important functions in many cellular processes 
such as Ca2 + regulation, as well as protein synthesis, 
maturation, and folding [10]. Accumulation of misfolded 
protein in the ER culminates in a process called unfolded 
protein responses (UPR) [4, 11] and has been reported 
in several animal models of PR degeneration [12, 13]. 
In addition to activation of UPR, increased intracellular 
calcium ions result in cell death through the activation 
of the cysteine protease calpain, which has been consid-
ered an alternative pathway for PR degeneration. Calpain 
I and II are expressed in the retina and are controlled 
in  vivo by the endogenous tissue inhibitor calpastatin 
[14, 15]. Activation of calpains requires calpastatin disso-
ciation and translocation to the cytosolic side of the ER 
[16]. The cell death effector in PRs triggered by calpains is 

apoptosis-inducing factor (AIF) which is a mitochondrial 
flavoprotein located in the outer mitochondrial mem-
brane and triggers cell death in a caspase-independent 
manner. DNA fragmentation is a consequence of proteo-
lytic cleavage and release of AIF from the mitochondria 
through pores formed by BAX oligomerization [16, 17].

Also, photon absorption by rhodopsin (RHO) leads to 
a conformational change in RHO protein and allows it 
to activate transducin and phosphodiesterase-6 (PDE6). 
PDE6 hydrolyses cGMP to GMP, resulting in diminution 
of cyclic nucleotide-gated channel (CNGC) permeabil-
ity, and consequently a reduction of Ca2+ influx. Also, it 
has been demonstrated that high intracellular Ca2+ lev-
els resulting from CNGC activation could promote PR 
degeneration. On the other hand, cGMP elevation results 
in the activation of cGMP-dependent protein kinase 
enzymes that trigger the cell death mechanism via a cal-
pain-dependent pathway [18]. Therefore, a large number 
of different malfunctions throughout RHO can cause 
protein sequestration in the ER. Thus, modulation of ER 
stress is also considered as a candidate for treatment of 
retinal degenerative diseases [19].

Stages of photoreceptor degeneration
Photoreceptor degeneration is a complicated process 
with different genes and factors involved, spanning 
environmental factors to monogenic disorders. Various 
therapeutic approaches have been adopted in an effort to 
maintain retinal function or restore vision in pathological 
conditions [20, 21]. To this end, a detailed understanding 
of the different phases of retinal degeneration has in turn 
paved the way for better regenerative approaches (Fig. 1) 
[22].

In the first stage of retinal degeneration, these condi-
tions can be difficult to recognize, as the PR function and 
morphology may remain typical. In this stage, whearse 
the appearance of retina layers may seem to be normal, 
several changes occur such as the disruption of the RPE 
in AMD or alteration in glucose concentration in DR. Ini-
tial disruption does not necessarily alter the function and 
morphology of PRs or retinal neurons [23]. Also, there is 
a phenomenon called glial reactivity (or gliosis), which is 
a cellular response of Müller glia and astrocytes to a dif-
ferent form of retinal damages [24]. Gliosis starts in the 
early stages of photoreceptor degeneration and may lead 
to glial seals and scars in the advanced retinal deteriora-
tion [25]. After gliosis, glial seals which are formed by 
Müller cells may complicate the cell therapy and replace-
ment of lost photoreceptors by affecting the migration of 
transplanted cells thereby limiting the formation of new 
synaptic connections [26–28]. It is important to note that 
the remaining cells are in a good structure and shape to 
enhance the chance of success in a cell-based therapy via 
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a selective cell type like photoreceptors. It has been dem-
onstrated that the following in progression in reactive gli-
osis, glial processes may extend into the vitreous side and 
subsequently form fibrotic scar which may result in reti-
nal detachments and thereby hindering tissue regenera-
tion [29–31]. So, other options such as retinal implants 
should be selected. Although, glial scar formation can 
delay the chance of success through the formation of 
a physical barrier between implants and host neurore-
tina [32–34]. This issue makes therapies to choose other 
treatments like preserving the remaining cells with neu-
rotrophic factors to restore vision and improve blindness. 
Overall, not only knowledge about the status of retinal 
degeneration but also finding the appropriate therapy 
helped restore vision.

During the second stage, cellular stress activates the 
apoptotic pathways and leads to PR cell death. At this 
stage, delocalization of RHO in the rods and the trans-
duction proteins in cones are considered as one of the 
first histopathological signs [35]. Cone PRs also undergo 
decreases in outer segment length [36]. The synaptic ter-
minals are deconstructed in stressed PRs leading to loss 
of synaptophysin. The loss of synaptic signals leads to 
various rewiring events, including bipolar and horizontal 
cell dendritic contraction, converting of synaptic targets 
by bipolar cells, and abnormal extension of horizontal 

cell processes into the inner plexiform layer (IPL) [37]. 
Also, ocular degeneration causes a cascade of actions 
during the early stages of PR dysfunction that terminate 
in molecular changes. In particular, Ca2+ overload has 
been recently referred to as a damaging process in the 
early stages of PR degeneration. It is worth noting that 
high intracellular Ca2+ is considered a common mecha-
nism of the degeneration process in general, as reported 
in mutant animal models [38]. Patients at the early stages 
of the disease still have PRs: and seek a cure to inter-
rupt the degeneration process in hope of preserving the 
remaining vision.

Neuroprotection and gene therapy methods are mostly 
based on neuroprotection with the aim of preventing 
neuronal degeneration and slowing the progression of 
the disease by interfering with inflammation, oxidative 
stress, apoptosis, and delivering drugs to specific survival 
pathways [39].

During the third phase, although the remaining PRs 
still preserve a degree of function, they are also engaged 
in the process of degeneration, and the other cells are 
also at risk of cell death. Concomitant with events, an 
increase in the gliosis of müller cells is observed and the 
number of activated microglial cells has been reported to 
be higher. At the end of this stage, blood vessels respond 
to the lack of oxygen by progressively producing new 

Fig. 1  Progression of retinal degeneration. The healthy retina consists of five major classes of neurons: photoreceptors, bipolar cells, retinal ganglion 
cells, horizontal cells, and amacrine cells, as well as the non-neuronal pigment epithelium. The early, intermediate, advanced, and late-stage of the 
retinal degenerative process results in changes in the function and morphology of the retina over time. These changes include truncation of the 
outer segments of PRs, reduction in cell numbers due to cell degeneration and death, appearance of reactive glial cells, hypertrophy of Müller cells, 
migration of neuronal cells, translocation of amacrine and bipolar cells into other layers, deep synaptic change, cell death progresses, the absence 
of visual capacity, deterioration of blood-retinal barrier and disruption of RPE and Brunch’s membrane. The current therapeutic approaches have 
also been presented for each degeneration phase
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vessels. At this stage, the PR layer will gradually disap-
pear. Translocation of residual cell bodies to other retinal 
layers occurs at this stage. Bipolar cells are not only dif-
ferent physiologically but also anatomically. In this phase, 
the bipolar cells physically retract their dendrites and 
thereby severely alter the morphology of the outer INL.

In the fourth phase, there is a lack of visual function 
owing to the degeneration impacting essentially all reti-
nal PRs. In this stage, amacrine and bipolar cells migrate 
into the retinal ganglion cell (RGC) layer and induce the 
formation of microneuromas. Moreover, synapses are 
formed between bipolar and ganglion cells [40]. This new 
rewiring of retinal cells results in abnormal visual cir-
cuitries. RGCs can migrate into the INL. The hypertro-
phy and migration of Müller cells generate a complicated 
lamination of the inner nuclear layer (INL) and outer 
plexiform layer (OPL). Rods and cones are in the process 
of being entirely lost at very advanced retinal degenera-
tion stages, with activation of cell stress and apoptosis 
pathways acting on any residual PRs at this stage [41]. 
Retinas show dramatic changes in morphology [42], 
where rewiring of the retina is extensive with neurite 
extension by all types of neurons in the setting of wide-
spread cell death [43]. When the unavoidable chain of 
degeneration reaches to the INL, the RGC loss happens 
and it causes the poor results of therapies. Formation 
of subretinal vascular complexes is one the latest events 
occur during wide RP death [44]. Following PR degenera-
tion, the retina shows the high level of hyperoxia which 
supresses the VEGF secretion [45]. Also, the breakdown 
of blood- retina barrier [44] and disorganization of RPE 
layer via new vasculture complex, leads to irreversible 
retinal diorders which affect the final results of therapies 
[46].

Therapeutic approach: points to consider
The eye position, within the orbital bones and associ-
ated tissue, is in a protective location, which also acts 
as an anatomical barrier and separates it from the rest 
of the body to a degree. The eyeball itself consists of an 
anterior segment, extending from the cornea to the lens, 
and a posterior segment extending from the lens to the 
retina, which is composed of the vitreous humour, sclera, 
choroid, retina, and optic nerve [47]. The various ocular 
barriers ranging from static (membranous) to dynamic 
(vascular) barriers, which are caused by the complex 
anatomy and physiology of the eye, limit the efficacy of 
approaches that require delivery to the posterior segment 
of the eye, including the retinal PRs. The static natural 
barriers consist of corneal epithelium, sclera, choroid, 
Brunch’s membrane, RPE, and conjunctiva. The dynamic 
barriers (i.e., blood-aqueous barrier and blood-retinal 
barrier) contain choroidal and conjunctival blood flow, 

lacrimation, and lymphatic drainage and efflux [48, 49]. 
All these ocular barriers limit therapeutic approaches, 
especially for the delivery of any substance or elements 
to the retina [50]. Even though there has been much 
research into intraocular delivery, such as vehicles and 
administration techniques, effective delivery to specific 
target sites within the posterior segment remains par-
ticularly challenging [51]. The majority of this review 
focuses on two main areas: administration routes and 
carrier systems.

Administration routes
Administration routes are commonly defined as the way 
that therapeutic elements, including pharmacologically 
active agents, trophic factors, gene therapy agents, or 
donor cells can be delivered to the target area. The identi-
fication of appropriate routes in these deliveries has been 
a focus of recent investigations. In this review, a sum-
mary of administration routes to the retina, especially the 
posterior segment is provided (Fig. 2).

Topical route
Topical ocular delivery, such as eye drops, suspensions, 
and ointments, is a viable and non-invasive route for 
administering therapeutics to the eye for the anterior 
segment. However, the effectiveness of this route to treat 
posterior segment diseases is limited by the low penetra-
tion of therapeutic molecules; thus, less than 5% of the 
drug reaches the target area [52–54]. Delivery of the 
pharmacological elements to the posterior segment via 
topical dosing has been broadly investigated in rodents 
[48]. However, this treatment, when applied to human 
subjects, yielded limited success owing to their corneal 
thickness, aqueous humour volume, flow rate, vitreal 
volume, and circumferential or linear distance from the 
ocular surface to the back of the eye [48]. For effective 
delivery of the topical drugs, three main factors need 
to be satisfied: sufficient aqueous solubility, lipophilic-
ity, and residence time. Therefore, the clinical success 
of the delivery to the posterior segment via this route 
remains elusive and requires further extensive preclinical 
assessment.

Systemic route
In a systemic route, therapeutic elements are adminis-
tered via intravenous injection. Local delivery to the PRs 
may potentially be possible by systematic administration 
of the prodrugs using novel delivery systems, including 
liposomes or nanocarriers [18]. However, these deliv-
ery routes cannot be considered optimal in the treat-
ment of PR degenerations, since only a low percentage of 
therapeutic agent permeates through the ocular barrier 
and reaches the posterior segment [55, 56]. This route 
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imposes challenges at both the molecular (i.e., carrier 
compound side effects and cost-effectiveness of the pro-
cess) [57] and intracellular levels (i.e., partial blocking of 
nanoparticle cellular uptake by binding to extracellular 
proteins and glycosaminoglycans to the nanocarrier sur-
face) [58, 59].

Intravitreal route
Intravitreal (IVT) administration is a route via which a 
substance is introduced directly into the vitreous, from 
where it can diffuse throughout the posterior segment. 
IVT, as the most common and local route of delivery, can 
overcome many ocular barriers and allow delivery to the 
PRs. Less frequency of administration, depot action, and 
sustained pharmacologic effect are the advantages of the 
IVT. However, ocular pain, infection or haemorrhage, 
vision impairment on repeated use, and diminished con-
trol of drug release are potential challenges associated 
with this delivery route. Besides, IVT injections such as 
implant insertion require skilled professional execution 
for administration, and post-injection/implantation care 
and removal and replacement are costly [55, 60, 61]. This 
route is also considered as a candidate for gene and cell 
therapy (Table 1).

Periocular route
This delivery route administrates substances into perio-
cular tissue, which is capable of local effects in periocu-
lar and/or intraocular tissues. The periocular path itself 
includes other different routes and has been investigated 
as a promising delivery way. Among these delivery ways, 
sub-tenon, subconjunctival, and suprachoroidal routes 
are usually chosen for delivery of the therapeutic agents 
to the posterior segment [51, 62]. Below, each method 
has been described briefly.

Sub‑tenon  A sub-tenon injection is placed in an avascu-
lar area between the tenon’s capsule, a fibrous membrane, 
and sclera, providing an increased diffusion to the pos-
terior segment [63]. The advantages of this way are the 
reduced therapeutic agent`s passage to the systemic cir-
culation and the prolonged contact time with the sclera, 
and its disadvantages are pain, chemosis, subconjunctival 
haemorrhage, retrobulbar and/or orbital haemorrhage, 
optic nerve damage, retinal ischemia, orbital swelling, and 
rectus muscle dysfunction [51, 61, 63–65].

Subconjunctival  In the subconjunctival route, thera-
peutic agents are injected underneath the conjunctival 
that covers the sclera, thereby avoiding the conjunctival 

Fig. 2  Schematic presentation of various routes for drug delivery to retina, including topical, intravitreal, systemic, and periocular and sub-retinal 
routes
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epithelial barrier. Therefore, not only direct access to the 
subconjunctival space is provided, but also therapeutic 
elements cross the sclera and choroid to reach the retina 
[51, 61, 66]. This route presents easier accessibility and 
reduced side effects, but it requires a higher injection vol-
ume with the same drug concentration compared to IVT. 
The limited concentration of agents in the retina limits the 
application of this pathway to the posterior segment [58].

Suprachoroidal  In suprachoroidal injections, drugs are 
administrated to the suprachoroidal space, a conceivable 
space between the sclera and the choroid. Minimizing the 
potential systemic side effects and increasing adminis-
tered dose without IVT route-related side effects are the 
significant advantages of the suprachoroidal way [55]. So 
far, the highest achievable drug level via this route is 1 ml 
suspension or solution [61].

Sub‑retinal
The sub-retinal injection is considered as another 
approach aiming at direct access to the PRs. This method 
has been mostly used for retinal gene, and cell therapies 
[67, 68] and all the procedures should be carried out in 
one step, as repeated treatments could lead to retinal 
detachment [57, 58]. The advantages of this approach are 
direct injection to the vicinity of the PRs, slight surgical 
invasion, and significant contact between the therapeu-
tic elements and host cells [69]. For this purpose, the 
injection may be carried out via trans-corneal, trans-
vitreal, or trans-scleral. Although the advantages and 
disadvantages of each method are discussed elsewhere 
[70], the argument in favour of each method remains 
among scientists. For example, trans-vitreal injection, 
which reaches the sub-retinal space vitreally, seems to 
offer greater visual monitoring of the procedure that is 
crucial from the surgical point of view [69]. While trans-
scleral injection, which penetrates the choroid, can avoid 
breaching the retinal blood barrier, somewhat, yet may 
lead to blood vessel damage and flux of immune cells [71, 
72]. Although this delivery route offers the possibility 
for avoiding the creation of retinal holes, and therefore 
risk of intravitreal extravasation of therapeutic product 
or retinal detachment, it can be technically more chal-
lenging and less frequently utilized. In theory, however, 
it might allow safer delivery to the subretinal space com-
pared to the IVT route [55, 73].

In summary, to cross-compare the commonly used 
delivery routes, the least invasive and less direct routes 
of administration could provide significant benefit to 
patients, while avoiding the risks associated with a 
direct, invasive method such as intravitreal injection, 
including endophthalmitis [74]. However, local delivery 
is superior to systemic delivery in terms of significantly 

reducing dose and biodistribution, thus minimizing the 
potentially deleterious side-effects associated with the 
systemic application [69]. It should be noted that the dif-
fusion across biological barriers in order to access the 
vitreous is significantly affected by formulations, dosages, 
sizes, charges, and structures of particles. To illustrate, 
large and hydrophilic compounds, particularly positively 
charged molecules, present a restricted diffusive move-
ment [75]. As a result, successful clinical delivery to the 
posterior segment requires a fundamental consideration 
of the therapeutic elements, metabolism at the injection 
site, the nature of ocular barriers, and possible strategies 
to overcome these barriers.

Carrier systems
The extensive research history exists behind the develop-
ment of an appropriately suitable vehicle for therapeutic 
element delivery. Encapsulating elements into the suit-
able vehicles can cross the ocular barriers thus bringing 
the cargo release closer to the target. The different types 
of carrier systems, including nanoparticle-based drug 
delivery systems, have been studied extensively dur-
ing the past decades for CNS and ocular delivery [57]. 
These technologies can improve the therapeutic effi-
ciency, compliance, and safety of ocular therapeutic ele-
ments, administered via different routes. In the following 
sections, a summary of the common systems used for 
the delivery of pharmacological elements was outlined. 
However, carriers used for gene transfer such as viral and 
nonviral vectors as well as the substrates used for cell 
transplantation such as implants and scaffolds will be dis-
cussed in the related sections.

Nanoparticle‑based delivery systems
Nanoparticle-mediated carrier systems have potential 
therapeutic effects due to their unique characteristics 
such as high biocompatibility, protecting the cargo, sus-
tained release, improved bioavailability of the particle 
localization, and enhanced drug efficacy. Also, nanopar-
ticles act as the active component of the therapy, such as 
Nanoceria which has shown promise for retinal disease 
[76–78].

Nanoparticles can protect delivery elements from sys-
temic clearance by either encapsulating or modifying the 
drugs to the surface of the nanoparticles through adsorp-
tion or covalent bonding. They create a controlled release 
of the cargo substances to prolong the therapeutic win-
dow and enhance the bioavailability with improved sta-
bility and targeting effects. The process of nanoparticles 
crossing the barriers and the ratio of nanoparticles dis-
tributing into the respective tissues depend on the phys-
icochemical properties of nanoparticles, in which the 
most crucial ones are size and surface properties [79].
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Particle size has an impact on biodistribution, toxic-
ity, targeting ability, as well as stability of the nanopar-
ticles. Nanoparticles, a size ranging from 1 to 1000 nm, 
have been used for intravitreal drug delivery due to their 
ability to be injected with a small needle. For intravit-
real injection, size has been investigated to play impor-
tant roles in diffusing through the vitreous, crossing the 
inner limiting membrane, interacting with the cell layers, 
and uptake by the targeted cell. Although particles with 
smaller sizes can overcome the vitreous and subsequent 
barriers, they tend to have longer circulation time and a 
higher degree of toxicity [79, 80].

The commonly used nanoparticle-based carrier sys-
tems and their different entrapping ways are outlined in 
the sections below (Fig. 3).

(a)	 Nanospheres are spherical nanovesicles with a size 
ranging from 10 to 200 nm and made of biodegrad-
able polymers that protect the drug from degrada-
tion. In nanospheres, the drug is entrapped inside the 
polymer or attached to the surface of the particles 
and capable of sustained drug release [49, 76, 81].

(b)	 Nanocapsules, with a size ranging from 10 to 
200  nm, are composed of a hydrophilic or lipo-

philic core or cavity surrounded by a polymeric 
membrane called the capsule. Nanocapsule, encap-
sulates relatively large amounts of drugs in the 
core, and present a more sustained release of the 
drug [76, 82].

(c)	 Liposomes are spherical amphipathic vesicles made 
of a naturally biocompatible phospholipid bilayer, 
resembling a cellular membrane that surrounds an 
aqueous core. Liposomes can entrap both hydro-
phobic (in the vesicle membrane) and hydrophilic 
(in the inner aqueous core) molecules. Liposomes, 
with their abilities in PR delivery of low molecular 
weight compounds and high molecular weight pro-
teins, have been shown to afford for future drug 
delivery approaches. This delivery system offers 
advantages such as biocompatibility, biodegrada-
bility, low toxicity, self-assembling capability, and 
allowing repeated intraocular injections [49, 76, 83, 
84]. Therefore, liposomes represent promising drug 
delivery systems (DDSs) and are widely used in 
preclinical studies for the treatment of retinal dis-
ease due to their high half-life, permitting the long 
term drug absorption as well as their capacity to 
significantly enhance pharmacokinetics and phar-

Fig. 3  Nanoparticle-based drug delivery systems. Common carrier-based drug delivery systems of therapeutic nanoparticles: nanosphere, 
liposome, nanomicelle, nanocapsule, dendrimer, hydrogel, and lipid nanoparticle
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macodynamics of any loaded drug compared to its 
free-circulating counterpart [85]. Surface-modified 
liposomes have been shown to enhance the effi-
ciency of drug delivery. In this regard, liposome 
surface modification by the water-soluble cationic 
polymer poly-L-lysine (PLL) has been reported 
as a high biocompatible and low toxic cargo [86]. 
Evidence began to accumulate that a lack of con-
sistency in the fabrication of liposomes and insuf-
ficient characterization of basic liposome features 
have a significant influence over in vivo outcomes. 
Thus, special attention should first be given to basic 
characteristics, including liposome constituents and 
resulting pharmacokinetics. Also, critical evalua-
tions of the obtained results, the analytical tech-
niques, and quantitative methods shall be taken 
into consideration to successfully develop the field 
[85].

(d)	 Nanomicelles are colloidal amphiphilic nanopar-
ticles, with a hydrophilic shell and a hydrophobic 
core in which drugs are solubilized and encapsu-
lated. Nanomicelles, as a novel ocular DDS allow 
enhanced peroneal residence, controlled sustained 
release of drug to the target area, and enhanced the 
bioavailability of the therapeutic agents with fewer 
side effects [76]. Nanomicelles are among one of the 
most widely studied nanoplatforms. It was reported 
that premature dissociation of the self–assembled 
multi-molecule polymer micelles could undermine 
their tissue-targeting capability and cause a burst 
release of the drug, potentially leading to systemic 
toxicity [87].

(e)	 Dendrimers are highly branched polymeric struc-
tures, which consist of a central core, branches, 
and terminal functional groups. Dendrimers are 
another DDS offering controllable nanoscale scaf-
folding and nanocontainer properties [88].

Whereas drug delivery vehicles including hydrogel 
and contact lenses would address residence time issues, 
developing novel carrier systems such as nanoparticles 
can alter lipophilicity and hydrophilicity of the prodrug 
to permeate throughout lipophilic barriers or dissolve in 
tear fluid, respectively [89]. Penetration enhancers such 
as quaternary ammonium compounds (cyclodextrins, 
chelating agents, crown ethers, bile acids, and bile salts) 
will also facilitate delivery of the therapeutic agents 
via temporarily modifying the membrane components 
[90]. Iontophoresis (penetration of ionized drug under 
the influence of low electric current) and sonophore-
sis (penetration of hydrophilic drugs and peptides at 
low (200–100 kHz) to high frequency (400–16000 kHz) 

ultrasound, respectively) have also been developed as 
non-invasive penetration enhancers [91]. A study has 
demonstrated that trans-scleral iontophoresis-assisted 
delivery of plasmid DNA will rescue PRs in the periph-
ery as observed by green fluorescence protein (GFP) 
transfer [92].

Polymeric carrier systems
Polymeric biomaterials in natural and synthetic forms 
have been utilized as delivery substrates for various ther-
apeutic elements in ocular regenerative approaches and 
have been extensively reviewed elsewhere [93, 94]. Poly-
meric nanoparticles can be made of various degradable 
biopolymers in which the active element is dissolved, 
entrapped, encapsulated or attached to the surface. 
Although they possess the features such as biodegrada-
bility, biocompatibility, ease and low cost of production, 
and the possibility to freeze-dry and reconstitute, as well 
as high constant stability, possible systemic toxic impacts 
from both polymer degradation products and residual 
organic solvents are the inevitable drawback of these sys-
tems [84].

Delivery challenges
Delivery to the posterior segment faces significant chal-
lenges, including administration issues and drug target-
ing to the PRs considering the eye barriers. Thus, new 
strategies have been developed to impose these obstacles 
by prolonging drug residence time, increasing particle 
permeation through ocular barriers and inventing drug 
release inserts. Understanding the complexities associ-
ated with pharmacokinetics and pharmacodynamics 
would greatly aid further advances to the field [95]. For 
successful treatment, both drug formulation and delivery 
system must be accurately be chosen, especially regard-
ing the route of administration.

Taken together, almost all treatments to deliver thera-
peutic agents to the PRs may lead to retinal detachment, 
haemorrhage and require patient compliance [96]. Thus, 
particular interest has sparked in sustained and targeted 
delivery using non-invasive nano carrier-based therapeu-
tic delivery systems. However, translation of this system 
from bench to bed, which mainly depends on their scal-
ability, dispersion safety and reproducibility, is somehow 
challenging [97]. Recent advance such as hydrogel carri-
ers, microfluidics and bioprints have been developed to 
promote commercialisation [98].

Except for obstacles that particles face on their path to 
the PRs (where the disease manifest), each drug, specifi-
cally, has its own issues to be addressed. For example, 
protein and peptides including Bevacizumab [99], goat 
immunoglobulin G (IgG) [100], (Anti-VEGF agents) 
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and Adalimumab (a monoclonal anti-TNFα antibody) 
[101] are a class of biopharmaceuticals, which have 
been used in PR degeneration. These biopharmaceu-
ticals face major challenges, including their large size, 
lack of permeability and vulnerability to degradation 
[61]. Although common administration routes men-
tioned earlier can be implicated to deliver macromol-
ecules, novel formulations have been developed, such 
as biodegradable polymeric micro/nanoparticles [102], 
delivery of positively charged proteins and peptides 
using negatively charged nanoparticles [100], sustained-
release by in-situ gel formation [103], and delivery using 
encapsulated cell technology (ECT) [104]. Several deliv-
ery techniques for PR regeneration are in the preclini-
cal stage, and some, like intravitreal implant of PLGA 
containing Brimonidine tartrate (Allergan) is completed 
(NCT00661479).

Current approaches of photoreceptor regeneration
In the following section of this review, we describe the 
innovations and recent developments in PR regenera-
tion. Neuroprotection, gene therapy, cell-based thera-
pies, and visual prosthesis are presently employed as the 
most opportune treatments in this growing research area 
(Fig. 4).

Neuroprotective strategies
Neuroprotective strategies aim to preserve neuronal 
viability, particularly in the early stage of vision loss, 
offer the possibility of slowing the progression to severe 
visual impairment, and therefore providing hope to pre-
vent blindness [105]. Neuroprotective treatments have 
been attempted for PR degeneration since as early as in 

1950 [106, 107]. Table  1 has summarised the research 
programs and trials that have been carried out with neu-
roprotective strategies to preserve PR cells prior to end-
stage progression; also we reported the state of progress 
of these trials towards clinical therapy.

The research history behind neuroprotection in retini-
tis pigmentosa (RP) is extensive and has included neuro-
trophic or anti-stress compounds, as well as stimulation 
of the signalling pathways by environmental stimuli, 
among various promising strategies, some of which have 
advanced to clinical studies. An in-depth discussion and 
analysis of the PR neurodegenerative mechanisms are 
beyond the scope of this review, however, the most com-
mon neuroprotective methods are outlined in the sec-
tions below.

Neurotrophic factors
Early attempts to retain neural viability include delivering 
endogenous or exogenous neurotrophic factors (NTFs) 
to neural retina tissues [108], which enhance PR cell 
survival through several neuroprotective interventions. 
NTFs consist of neurotrophins (NTs) generally, as well as 
related molecules, including nerve growth factor (NGF), 
brain-derived neurotrophic factor (BDNF), neurotro-
phin-3 (NT-3) [109], neurotrophin-4/5 (NT-4/5) [110], 
glial-derived neurotrophic factor (GDNF) (neurturin, 
artemin, persephin), the serine protease inhibitor (srpin) 
family, pigment epithelium-derived factor (PEDF), neu-
ropoietic cytokines (ciliary neurotrophic factor (CNTF)), 
insulin-like growth factors, and transforming growth fac-
tors (TGF) [111, 112]. These neurotrophins, which can be 
released by glial cells, including microglia and macroglia 
[113, 114], are found in photoreceptor segments [115]. 
Gene delivery [116, 117] or intraocular injection [118] 

Fig. 4  Different approaches for retinal regeneration. Current therapy methods have been categorized in neuroprotection, gene therapy, cell 
therapy, and visual prosthesis
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of the neuropoietic cytokine CNTF rescues PR cells in 
several types of genetic degeneration or from the damag-
ing effects of constant light [119]. However, the clinical 
efficacy of CNTF for PR degenerations may be question-
able [120] since CNTF transgene expression delays PR 
cells degeneration in small animal models, but may not 
rescue normal retinal function of the preserved cells 
[121]. Continuous BDNF expression in double transgenic 
mice protected PRs cells significantly, whereas intravitre-
ous injections of BDNF in mouse models showed minor 
survival-promoting activity [122, 123]. PEDF is another 
neuroprotective factor expressed by RPE cells and exter-
nalized into the surrounding interphotoreceptor matrix 
where it in turn could function as an anti-inflammatory 
and neurotrophic element providing PR protection [124, 
125]. Moreover, recent studies have demonstrated that 
these activities are conferred by PEDF peptides (amino 
acids that span between positions 98–114 of the human 
PEDF sequence), which affords cone neuroprotection of 
a mouse model upon a single intravitreal injection [126, 
127].

Despite the undisputed benefits of neurotrophic fac-
tors mentioned above for the reduction of PR cell death, 
there is still extensive discussion regarding the risks asso-
ciated with others like vascular endothelial growth fac-
tor (VEGF). Clinical data have implicated the potential 
damage to the retinal neurons in patients treated with 
frequent administration of anti-VEGF injections [128]. 
In fact, monthly intravitreal injections of VEGF have pro-
moted PR regeneration in rd1 mouse model by stimulat-
ing the proliferation of the retinal progenitor cells (RPCs) 
[129]. Therefore, the possibility that exogenous VEGF 
promotes PR survival conflicts with the advantages of 
VEGF suppression in the treatment of retinal and choroi-
dal vascular diseases [130].

Although, the neuroprotective effect of these neuro-
trophic factors is limited by their relatively short half-life 
in the vitreous (e.g., 1.5  min for CNTF [131]), several 
attempts have been made to develop delivery systems 
that could increase the availability of these agents for a 
longer period. Some delivery alternatives which bring 
neurotrophic factors closer to the clinic are: the use of 
cell-based delivery methods such as encapsulated cell 
intraocular implants (CNTF release from encapsulated 
cells) [104, 132], gene-therapeutic methods such as intra-
vitreal injection of GDNF-secreting mouse embryonic 
stem cells in the transgenic S334ter rat [133], repeated 
microinjections into the suprachoroidal space [134], 
adeno-associated virus (AAV)-mediated delivery of 
CNTF [117]. Also, the combination of growth factors has 
been successfully implemented to enhance neurotrophic 
potential compared to the delivery of a single growth 

factor with improvement in the overall efficacy of neuro-
protection [135].

Cells can also deliver neuroprotective factors to the tar-
get area as a function of their own secretome. Numerous 
studies have demonstrated that mesenchymal stem cells 
(MSCs) provide protection effect via a variety of growth 
factors, as well as immuno- or apoptotic modulators. 
Several reports have shown that MSCs from different 
sources possess neurogenic and neuroprotective capabili-
ties capable of protecting PRs from degeneration. Human 
umbilical cord blood MSCs, injected into the subreti-
nal space of RCS rats, significantly reduced the degree 
of PR degeneration and this was attributed to secretion 
of neurotrophic factors, such as FGF2 and BDNF [136]. 
Transplantation of bone marrow mesenchymal stem cells 
(BM-MSCs) in subretinal [137], epiretinal [138], or com-
paratively subretinal/intravitreal spaces [139] increased 
PR cell survival and rescued retinal function in the rat 
model of retinal dystrophy.

Recently, Usategui-Martín et  al., evaluated the neuro-
protective potential of the hBM-MSCs secretome using 
the ex  vivo model of spontaneous neuroretinal degen-
eration and identified paracrine factors secreted in a co-
culture system. The expression of several proteins with 
antioxidant, anti-apoptotic, or anti-inflammatory activity 
were detected in the neuroretina co-cultured with h-BM-
MSCs. They also reported that hBM-MSCs expressed a 
variety of factors which could protect against PR degen-
eration, including GDNF, BDNF, PDGF, and CNTF [140]. 
The in vitro evidence showed that secretion of cytokines, 
neurotrophic factors, and anti-inflammatory paracrine 
factors by hBM-MSCs likely plays a key role in the thera-
peutic effect.

Dental pulp stem cells are another source of MSCs 
revealed to overcome PR cell death and possess increased 
neurogenic and neuroprotective capabilities as well as 
functional preservation after being injected into the 
intravitreal space in a rat model of NaIO3- induced reti-
nal degeneration. This could be explained by the height-
ened expression of NTFs [141].

Another cell type of interest is the RPC, which will also 
be discussed later. These are multipotent cells of neu-
ral lineage, either derived directly from fetal retinal tis-
sue or, alternatively, differentiated from pluripotent cell 
types using defined protocols. RPCs have been viewed 
as a candidate cell type for use in photoreceptor replace-
ment applications based on their pivotal role in generat-
ing photoreceptors during retinal development. Animal 
studies confirmed integration of allogeneic RPCs into the 
retina, which was associated with functional improve-
ment [142]. These cells can also be derived from prena-
tal human donor tissue [143]. Interestingly, the cells have 
shown utility as a method of retinal neuroprotection in 
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retinitis pigmentosa, based on ongoing clinical studies 
(Table 1).

There is growing evidence that neurotrophic protec-
tion might be achieved by material transfer, suggesting 
a powerful new mechanism to improve dysfunctional 
and degenerating PRs [144]. Transplantation of reporter-
labelled post-mitotic photoreceptor precursor cells into 
the subretinal space followed by improvement of visual 
function was understood to be due to donor and host 
PRs engaging in transfer of cellular material, either as 
RNA and/or proteins. The evidence presented indicated 
that donor PRs might not structurally integrate into the 
retinal tissue but instead exchange intracellular contents 
with host retinal cells. The in  vivo material exchange, 
including RNA and/or protein, has been detected 
between host and donor cells, however, actual fusion 
between donor and host cells has not been demonstrated 
[145]. Therefore, in addition to donor cell integration, 
which has been reported previously, material exchange 
may represent an additional mechanism by which vision 
can be rescued via cell therapy [146].

Topical administration of αlpha-2 adrenergic agonist 
brimonidine (BRM) has potent neuroprotective effects 
against phototoxicity [147] and maintained the photo-
receptors in animal model of diabetes [148]. Vidal-Sanz 
et al. has extensively studied the neuroprotective effects 
of BRM in retinal degeneration via administration route 
[149, 150].

In addition, microglia activation as a trademark side 
factor of retinal degeneration is also an important issue, 
which is broadly investigated by differet research studies 
and the controlling mechanisms such as anti-inflamma-
tory components might be applicable. The reports have 
been revealed that Minocycline, a semi-synthetic tetra-
cycline analog, or 2, 2′-aminophenyl indole (2AI) showed 
a potent immunomodulatory as well as neuroprotective 
effects via reducing nitric oxide production or pro-apop-
totic gene expression [151–153].

Extracellular vesicles (EV), especially exosomes, pro-
vide a means by which intercellular material transfer 
might occur, and therefore represent another potential 
source of neurotrophic agents for PR regeneration. The 
EVs, as a mechanism of messaging and transfer of subcel-
lular materials, deliver protein and miRNA cargoes and 
can reportedly play a therapeutic role in retinal regen-
eration, mainly by a miRNA exchange mechanism [154, 
155]. EVs consist of heterogeneous sub-micron popu-
lations, including exosomes (30–110  nm), ectosomes, 
endosomesoncosomes, microvesicles (200–500  nm), 
apoptotic bodies (500–1000  nm) [156].  The heteroge-
neous nature of EV populations, the ability of EVs to 
reach inner retinal layers, as well as the reduced risk of 
donor cell malfunction post-injection, would be potential 

advantages of a cell-free, EV-based neurodegenerative 
ocular disease therapy.

Intravitreal injected EVs, derived from MSCs, success-
fully delivered their cargoes to the inner retinal layers and 
partially prevented axonal loss and degeneration follow-
ing mechanical [157] or optical [158] injuries. Exosomes 
from RPE, used in combination with mouse retinal 
explants exposed to oxidative stress, demonstrated a 
potential mechanism for PR neuroprotection based on 
secretion of αB crystalline (a chaperone protein) that was 
taken up by photoreceptor cells [159].

Nevertheless, EVs can also play a neurotoxic role by 
transferring potentially deleterious exosomal miRNAs or 
lipids into the recipient neural cell or, similarly, spreading 
toxic proteins through exosomes to neighbouring neu-
ral cells [160]. For instance, EV activity was regulated via 
inhibition of Poly ADP ribose polymerase (PARP) activ-
ity, which is involved in PR degeneration. PARP inhibi-
tion protected rod photoreceptors in a PDE6b mutation 
model [161].

In conclusion, much research remains to be done to 
reveal the full potential of therapeutic intervention with 
EVs in PR neuroprotection.

Anti‑stress compounds
The following sections provide a detailed explanation of 
the neuroprotective compounds, including antioxidants, 
synthetic bile acid, steroid hormones, and dopamine, by 
reviewing their history, mechanism of action, and further 
consideration in bringing the compound closer to the 
clinic (Table 1).

Antioxidants  The high metabolic rate of retina 
increases the chance of the cells’ reactive oxygen spe-
cies (ROS) exposure as a byproduct of the redox-regu-
lating system. The application of antioxidants, including 
vitamin A/E/C, docosahexaenoic acid (DHA) and glu-
tathione (GSH) has been a focus of investigations as a 
mean of PR neuroprotection via increasing the resist-
ance of neurons to oxidative stress [257]. Beginning in 
the late 1960s, Berson et  al. conducted several studies 
and clinical trials on retinitis pigmentosa patients who 
took vitamin A alone or in combination with other prod-
ucts [258–265]. They reported that protective effects are 
under the influence of experimental designs such as age 
[260, 266], gene mutation [267] and type of supplemen-
tation [268]. For instance, vitamin A was found to be 
relatively effective in clinical trials comparing vitamin A 
alone or in combination with vitamin E, DHA, or lutein 
[261, 263, 269]. In another study, declination of the vis-
ual field was reduced in patients who had an omega-3 
rich diet and were taking vitamin A [270]. As for genetic 
mutations, Jin [271] used patient-derived induced pluri-
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potent stem cells (iPSCs) to construct patient-specific 
rod cells. These cells with specific mutations respond 
differently to vitamin E than had been observed in 
clinical trials, most likely due to the different under-
lying mutations. Similarly, differences among species 
would lead to inconsistent responses in different animal 
models. Komeima and coworkers [272, 273] studied a 
mixture of antioxidant treatments with α-tocopherol, 
ascorbic acid, Mn (III) tetrakis (4-benzoic acid) porphy-
rin, and α-lipoic acid on rd1 mouse model of RP, rd10/
rd10 mice (a model of more slowly progressive recessive 
RP) and Q344ter mice (a model of rapidly progressive 
dominant RP). Treatment with the antioxidant mixture 
resulted in moderate preservation of cone cell recep-
tor in rapidly progressive RP regardless of the reason 
behind the rod cell death. Whereas, animal models with 
slowly progressive RP interestingly showed prolonged 
rod survival suggesting that rod cell death due to the 
oxidative stress may contribute in more slowly progres-
sive diseases. In another study, the synergic effect of a 
combination of lutein, zeaxanthin, alpha lipoic acid and 
reduced l-glutathione antioxidants were reported on the 
rescue of rd1 PRs whereas individual antioxidants had 
no significant survival effect [274]. Antioxidants can be 
taken orally, however, variables such as dosage, age, and 
genetic mutations are not established yet.

Synthetic bile acid  Taurine-conjugated derivative tau-
roursodeoxycholic acid (TUDCA) was first introduced as 
a potent antioxidant by a research group at the Univer-
sity of Alicante [275]. Significant quantities of TUDCA 
could be found in the bile acid of hibernating black bears; 
also, this compound has been synthetically available 
since 1954. Despite the positive results obtained from the 
application of TUDCA on PR regeneration through pro-
tein folding and trafficking enhancement and/or ER and 
oxidative stress reduction [169], appropriate dosing and 
mechanism of actions of this compound require further 
extensive in-vivo trails. As such, much uncertainty still 
exists about the mixed effects were observed in animal 
models treated with TUDCA. For instance, in rd1 mice 
suffering from progressive retinal disease, daily intraperi-
toneal injection of TUDCA reduced PR degeneration 
[162] whereas, this dosing was not sufficient to stop PR 
cell death for rd1 and rd16 mice in another study [166]. 
Hence, to deliver the high dosage of the drug, Fernandez-
Sanchez et  al. have assessed an intravitreal controlled-
delivery TUDCA encapsulated poly D-lactic-co-glycolic 
acid (PLGA) microspheres in a rat model of RP [163]. 
Furthermore, TUDCA significantly improved PR cell sur-
vival after retinal detachment by reducing oxidative stress 
compared to controls, though TUDCA did not affect ER 

stress in this retinal detachment model [170]. TUDCA, 
likewise, preserves the network of blood vessels and pre-
vents the reorganization of the retina observed in the 
late stage of retinal injury in a mouse model of RP [276]. 
Taken together, TUDCA, as a FDA-approved compound 
is a promising neuroprotective factor, which has already 
begun translating into the clinic (Table 1).

Steroid hormones  Steroid hormones such as proges-
terone are synthesized in peripheral tissues as well as in 
the central nervous system (CNS). Their neuroprotec-
tive effects in CNS have been widely described [277]. As 
with the brain, the presence of hormone steroid recep-
tors and steroid enzymes make retina a site of steroid 
production. Neuroprotective effects of progesterone 
exploit on multiple pathways, like (a) decreasing oxida-
tive stress; (b) reducing inflammatory cytokine levels 
(IL-1β, TNF-α, IL-6, COX-2, and the p65 NF-κB subu-
nit) [193]. (c) decreasing cellular apoptosis via increas-
ing anti-apoptotic proteins (Bcl-2, Bcl-xL), and reducing 
pro-apoptotic proteins (Bax, Bad, caspase-3) [278], as 
well as (d) up-regulating the inhibitory neurotransmitter 
γ aminobutyric acid (GABA) [279]. The aforementioned 
mechanisms are known to be effective in PR cell survival 
[280]. Sánchez-Vallejo et  al. reported that oral adminis-
tration of progesterone delays PR cell death in a rd1 mice 
model of RP. In this study, progesterone acted on multi-
ple levels like reducing retinal glutamate concentrations 
at PN15 and PN17 and increasing oxidized glutathione 
retinal concentrations [281]. In another work, PR cells 
survival was improved up to 70% in two different diseased 
mouse retinas; the light damage model and the Pde6brd10 
model [282]. However, it appears that the effectiveness of 
the treatment with neurosteroids significantly depends on 
synthetic details (chemical structure and receptors they 
bind to), optimal dose, timing, and tapering of dose [283]. 
Being safe and FDA-approved can lead toward the thera-
peutic application of the treatment with steroid hormones 
in the nearest future [284]. However, successfully com-
pleted the clinical phases of this treatment require over-
coming the mentioned experimental design limitations.

Dopamine  Previous studies have identified potential 
roles for dopamine in multiple retinal functions [285, 
286]. Acting via dopamine D2-like receptors such as D4Rs 
in PR cells, DA modulates the production of cyclic adeno-
sine monophosphate (cAMP), downregulating melatonin 
synthesis [287], and regulating the cell to cell coupling 
among horizontal cells depending on the phase of the 
light cycle [288]. Dopamine has also been revealed to act 
as a chemical messenger in trophic functions of the retina 
[289, 290]. Although dopamine has been reported to have 
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either protective or toxic roles on neurons (most likely 
due to the malfunctioning mechanisms regulating dopa-
mine homeostasis) [291], yet it is one of the few neuropro-
tective factors applied in humans. Levodopa, also known 
as L-Dopa and l-3,4-dihydroxyphenylalanine, has been 
effective on the patient with AMD [199, 203], contrast 
sensitivity [292], visual alterations in de novo Parkinson’s 
disease [293], ischemic and traumatic optic neuropathies 
[294–296], and rhegmatogenous retinal detachment [289]. 
However, to translate treatments targeting dopamine to 
the clinic, systemic side effects observed in Parkinson’s 
patients, like insomnia, gastrointestinal symptoms, motor 
side effects and hallucinations need to be considered 
[297–299]. Moreover, delivery methods of the drug to the 
eye [198], type of the drug (L-DOPA, dopamine agonists, 
dopamine transporter inhibitor) [297, 298, 300] and opti-
mal dose for the retina disease are fundamental consid-
erations, which must be determined to achieve a highly 
efficient dopamine based neuroprotective treatment.

Rehabilitation methods
The protective effects of rehabilitation approaches, 
including exercise and electrical stimulation, have 
also been a focus of recent investigations as a prom-
ising modality of PR regeneration. The rehabilitation 
approaches appear to act via multiple pathways such as 
modulation of BDNF and VEGF and/or mediation of 
BDNF/TrkB signal transduction. For instance, exercise 
increased retinal BDNF protein levels by 20% in wild-
type BALB/c mice, which were exercised on a treadmill 
then exposed to toxic bright light; therefore, PR regen-
eration was implicated by BDNF signalling [242]. Some 
reports revealed the involvement of FNDC5/irisin path-
way in the upstream of BDNF following exercise [301]. 
Another research has been performed in this field indi-
cating that a similar pattern of retinal leukemia inhibi-
tory factor (LIF) gene expression was induced by aerobic 
exercise preconditioning and protect PRs against light-
induced retinal degeneration (LIRD) [302]. Moreover, 
TrkB activation was found to mediate exercise’s preser-
vation of the retina in rd10 mouse model of RP that was 
voluntary active [241].

Electrical stimulation is also considered as a rehabilita-
tion method providing neuroprotection in different ani-
mal models of retinal degeneration [245, 247]. Electrical 
stimulation, which can be applied via inserting electrodes 
in the subretinal space or on the cornea, preserves retinal 
function through inducing growth factors [244], down-
regulating IL-1β, TNFα, and Bax, and up-regulating 
Bcl-2 [246]. For instance, subretinal electrical stimulation 
(SES) from a microphotodiode array (MPA) promotes the 
signal transmission through the retinal network and con-
sequently preserves PRs in RCS rats [248]. Furthermore, 

transcorneal electrical stimulation (TCES) was found to 
delay PR degeneration by activating the intrinsic survival 
system, such as selectively up-regulating Bcl-2 and CNTF 
in Müller cells [246]. A clinical trial has also been car-
ried out on human suffering from decreased vision due to 
multiple sclerosis. The primary outcome showed partial 
vision improvement after eight weeks of treatment with 
transcorneal electrical stimulation (NCT02019927).

Besides the mentioned benefits of rehabilitation meth-
ods to the PR neuroprotection, optimal stimulation 
parameters, or exercise regime (speed, duration, and the 
type of exercise) need to be addressed prior to its impli-
cation into the clinic.

Gene therapy
The eye is a unique organ for therapeutic trials based on 
gene transfer owing to its anatomically accessibility for 
surgical injection and its immune-privileged status due 
to the presence blood-retina barrier. Also, its small size 
requires a low gene/vector dose to achieve a therapeu-
tic response [303, 304]. Gene therapy has an advantage 
over traditional pharmacological approaches because of 
its long period effect without the need for repeated inter-
ventions [304].

As an efficient treatment focus on the retina is an espe-
cially appropriate organ for restorative obstructions. PR 
dysfunction is an ideal translational model for the devel-
opment of gene replacement therapies targeting PRs.

Genome editing strategies: carriers and modalities
Gene therapy as a strategy for disease treatment requires 
a safe and effective gene carrier because nucleic acids 
don’t pass across lipid bilayer cell membrane. Finding a 
suitable vector for delivering therapeutic genes without 
causing cell injury, oncogenic mutation, or inflammation 
makes gene therapy a promising modality compared to 
conventional methods. IRDs are permanent blinding sit-
uations due to mutations in genes expressed in PRs and 
RPE [305]. Present clinical trials on gene therapy in the 
eye contain the delivery of exogenous genetic informa-
tion into the cell with inherited genetic defects. Carrier 
used to transfer genetic material, introduce the gene of 
interest into cells [306]. This delivery can befall via viral 
or non-viral vectors. Each of these systems has different 
strengths and weaknesses, and the selection of the vec-
tor used mainly depends on the application.[307]. The 
perfect vector would deliver an adequate size of foreign 
genes into the target cell, thereby allowing for the expres-
sion of the gene and being non-immunogenic and safe.

Viral vector  In the past decade, the application of viral 
vectors in gene therapy has been increased notwithstand-
ing this technique yields high technical demands and an 
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increased risk of virus-associated toxicity. However, sig-
nificant improvements have been introduced in the viral 
vectors replication component to make them safe [308]. 
During induction, the viral vectors transfer DNA to the 
host without appealing an immune response. Though viral 
vectors are presently the best option as a delivery system, 
the optimal method for delivering genes to the RPEs and 
PRs remains to be improved in order to rise transduction 
efficacy and reduce iatrogenic conditions [309].

There are two classes of viral vectors: integrating and 
non-integrating viral vectors. It is the ability of retrovi-
ral, lentiviral, and adeno-associated viral (AAV) vectors 
incorporate into the genome; whereas the non-integrat-
ing vector (e.g., adenoviral vector) is preserved in the 
nucleus without integrating into the chromosomal DNA, 
so the foreign gene is lost throughout cell division, and 
the expression is transient [310].

Retroviruses
Retroviruses are RNA viruses that use RNA as a target to 
transcribe into double-stranded DNA. This intermedi-
ated DNA is then fused into the host DNA, so machinery 
of the host cell produces all necessary viral components. 
Since the viral genome is able to integrate into the host 
DNA, all modifications will be transferred to all cells 
derived from the transfected cells [311]. Apart from the 
large-scale usage of retroviruses-mediated transfer of 
genes, the major limitations of retroviral vectors are low 
vector titter, and low transfection efficiency that con-
firmed in  vitro experiments. Moreover, retroviruses are 
disabled to transduce gene into non-dividing cells, and 
target only proliferating cells [312].

In 1987, Connie Cepko evaluated the intraocular trans-
fer of retroviral vectors to the rodent RPCs with reporter 
genes. Though it was not a therapeutic experiment, this 
study was the first report of in vivo gene delivery to the 
retina using retroviral vectors for delivery [313]. In pre-
vious lectures, some physical approaches have been 
exploited to recover the efficiency of retrovirus-mediated 
gene transfer owing to little retroviral titter.

Combined with the safety of gene transfer, it shows that 
ultrasound-assisted gene delivery has broad prospects 
as a new method to improve the efficiency of retroviral 
gene delivery. De-Kuang Hwang et al. demonstrated the 
capacity of ultrasound standing waves to improve retro-
viral transduction into retinal stem cells (RSCs). Their 
study was designed to use acoustic waves to improve the 
efficacy of gene delivery for RSCs [314].

Lentiviruses
Lentiviruses are known as a superior group of retrovi-
ruses that can be used to infect both proliferating and 

quiescent cells. Lentiviral transfer systems efficiently 
maintain expression and effective transfer without sys-
temic inflammation [315]. Lentiviral vector gene–carry-
ing capacity is between that of adenoviruses and AAVs, 
with a maximum cargo of nearly 8 to 9 kb [306].

Thus, it seems that lentiviral vectors are not suitable for 
use in post-mitotic tissue such as retina because of their 
ability to infect dividing cells. Yao and colleagues applied 
the subretinal injection lentiviral vectors containing neu-
raminidase and observed that the interphotoreceptor 
structure had been changed [316]. Besides, Gruter et al. 
have demonstrated that the lentiviral vector can trans-
duce PRs in the young rodent retina, whereas it is poorly 
efficient for PRs of adult animals [317]. In conclusion, 
lentiviral vectors may be beneficial for the treatment of 
PR disorders by facilitating the transmission of secreted 
factors, such as neurotrophic or antiapoptotic factors, to 
RPE [318, 319].

Adenoviruses
The target gene is not incorporated into the host genome 
by the adenovirus. In other word, the adenoviral genome 
leftovers in the nucleus as an episomal component after 
the contamination of the host cell [320]. Adenoviruses-
mediated transfer of gene has some advantages including; 
easy purification, and the high-efficiency rate of host cell 
infection, dividing or quiescent cells. These advantages 
make adenoviral vectors the most frequent vehicle for 
direct in  vivo gene transfer. The disadvantages of these 
vectors are the episomal nature of viral genes, and they 
are also expressed immune response factors to the trans-
duced cells [321].

In 1996, Bennett et  al. delivered a cDNA copy of the 
phosphodiesterase β subunit to PRs in the rd1 mouse 
model using adenoviral vectors. They found that PR 
degeneration was delayed by 6 weeks [322].

Adeno‑associated viruses
AAVs have high transduction proficiency and cell type 
specificity as well as low immunogenicity, making them 
an attractive tool for gene therapy. AAVs have been 
demonstrated that have no known pathogenicity, tar-
get non-proliferating cells, low immunogenicity, and 
may have distinct genome insertion sites [323]. These 
vectors have a smaller packaging capacity (4.7  kb) than 
lentivirus (8  kb), meaning they can’t carry gene coding 
exceeded than 5  kb. Scientists are also endeavoring to 
split transgenes or generate minigenes between AAV vec-
tors, to overcome the size limitations of AAV. Over the 
past decade, AAV vectors most widely used for retinal 
gene transfer. For overcoming the small size of AAV, the 
dual AAV vectors each of which contains half of a large 
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transgene expression cassette have been engineered. 
However, dual AAV vector PR transduction efficiency 
is currently lower than with a single AAV vector [324]. 
Because of the low integration frequency, low immuno-
genicity, and non-pathogenicity potential of AAV, it is 
the best way to improve safety profile in comparison to 
other viral vectors [325, 326]. Recently, thirteen wild-type 
AAV serotypes (AAV1–AAV13) have been isolated, and 
AAV2-based vectors have been reported to have a good 
affinity for PRs and the RPE [327]. Non-viral gene deliv-
ery methods, in addition to viral-mediated gene replace-
ment therapies, guarantee the continuous fine-tuned 
expression of secreted protein therapeutics that can be 
adapted to the evolving stage of the course of the dis-
ease and can address more common non-genetic retinal 
diseases.

Non‑viral vector  Although significant progress in gene 
therapy has been made in studies on the application of 
viral vectors, they cause immunogenicity and patho-
genicity. More recently, the application of non-viral gene 
therapy has been developed for the transduction of genes 
because of its less immunogenic and expensive than viral 
approaches [328]. Non-viral such as naked DNA, nano-
particles, and liposomes can be used to deliver DNA of 
unlimited size [329], which is explained more here.

Liposomes‑based methods
Liposomes as the self-assembled structure are explained 
above, have been tried in order to gene delivery to the eye 
[330, 331], however, the efficiency concerning viral vec-
tors is lower, and the effects are transient [332]. Asteriti 
and colleagues injected lipid nanovesicles into the vitre-
ous body of the eye and observed increased sensitivity 
of rod photoreceptors to light [333]. However, the use of 
liposomes to target PRs gave unpromising results [334]. 
Besides, Kachi et  al. delivered liposomes to the sub-
retinal space and found that RPE cells were transfected, 
but PR transfection was not observed [335]. Moreover, 
liposomes have many advantages for gene transfer, but 
they tend to aggregate following administration which 
can interfere with vision as well as result in retinal toxic-
ity [336]. In conclusion, it seems that liposome-mediated 
gene delivery is not a suitable approach for promising 
results in the therapeutic use of IRDs, at least for the 
moment.

Naked DNA plasmid
Gene transfer with naked DNA plasmid exposed to 
intracellular nucleases would result in DNA degrada-
tion [309]. Electroporation with naked plasmid DNA 
improves DNA cell entry into ocular cells because it 
facilitates cell permeabilizations for enhancement of gene 

delivery into the cells [337]. In the eye, plasmid DNA 
electroporation was applied to transduce retinal cells. 
Efficient gene transfer to the neuroretina [338], RPE, and 
PRs by electrotransfection was achieved following sub-
retinal injection of naked plasmids [339, 340]. Iontopho-
resis has been applied for transferring plasmids through 
sclera and express transgenes in the PR layer of adult 
normal and newborn rd1 mice [341]. In general, it is 
essential for naked plasmid DNA to protect against endo-
nuclease degradation in the cytosol, and the approaches 
that would delay of endosomal escape might be applica-
ble in gene therapy.

Nanoparticle‑based methods
Nanoparticles (NPs) for gene therapy are categorized 
broadly into three groups including; (1) metal NPs, (2) 
lipid NPs, and (3) polymer NPs. For enhancing their effi-
ciency in gene delivery, they should be uptake by cells, 
escape from endosomes and deliver the DNA plasmid 
to the nucleus for gene expression [342]. Recently, NPs 
have developed as gene nanocarriers to the retina. Kim 
et  al. applied the intravitreal injection of gold NPs to 
the eye and found that they were non-toxic to the retina 
[343]. Rds gene encodes retinal disease slow (RDS) pro-
tein which is known as peripherin/rds. The subretinal 
injection of NPs carrying Rds plasmid induces Rds gene 
expression in PR cells [344, 345]. Mitra and colleagues 
injected RHO DNA NPs into the sub-retinal space of 
the RhoP23H/P23H knock-in mouse eyes and observed par-
tial improvement in structural and functional recovery 
of rod cells [346]. Perfection in the mouse model of RP 
was observed after NP-mediated genomic DNA trans-
fer [347]. Finally, despite the greatest potential benefits 
of non-viral retinal gene therapy, the issue of transient 
expression is an obstacle not yet overcome in this delivery 
system. Future developments may include new engineer-
ing to overcome their present limitations to long-term 
expression associated with non-viral gene delivery.

Gene silencing (siRNA)
One of the achievements in gene therapy is the inhibi-
tion or reaction of damaging effects that can be permit-
ted by targeted inhibition of gene interested expression. 
Inhibition of gene expression has been applied in some 
retinal diseases by antisense oligonucleotides, aptam-
ers, and siRNAs [348, 349]. siRNA is a potent inhibitor 
for gene knockdown which sequence-specific gene loss 
of function has been established in some tissues in vitro 
and in  vivo [350]. The sequence specificity of siRNA 
associated with a local direction in the temperately iso-
lated confinement of the eye provides an ideal setting for 
eye-specific gene interruption [351]. Owing to the tiny 



Page 21 of 52Karamali et al. Journal of Translational Medicine          (2022) 20:572 	

half-life of siRNA molecules, a daily reversible and dos-
age-variable treatment routine by non-invasive transfer is 
necessary [352].

Because of immune-privileged and surrounded prop-
erties of the eye, it is a suitable target for siRNA [350]. 
siRNA, as a therapeutic approach, has several key advan-
tages containing sequence-specific targeting of almost 
any molecular target, access to currently ‘‘undruggable’’ 
targets, and relatively easy design at low cost. Despite 
these gains, the delivery of siRNA to the posterior sec-
tion of the eye, such as the RPE segment, is not trivial for 
numerous reasons that assume are too large, hydrophilic, 
and negatively charged and hence cannot across cell 
membrane alone. This molecule degrades with a nucle-
ase enzyme [353]. Besides, siRNA can also stimulate the 
immune system through the Toll-like receptor pathway 
[354, 355]. siRNAs have been tested in the pathogenesis 
of glaucoma, RP and neovascular eye diseases such as 
AMD, diabetic retinopathy (DR), choroidal neovasculari-
sation (CNV) for animal models, and clinical trials have 
been shown with some of them [356].

Reich et al. applied subretinal delivery of siRNA to loss 
of function of VEGF in vivo in mice. The same study was 
performed on primates. In both cases, siRNA targeting 
VEGF considerably decreases the amount of neovascu-
larization in the model of CNV [357, 358]. In the addi-
tional paper, siRNAs targeting either VEGF, VEGFR-1, 
VEGFR-2, or a mix of the three were displayed to reduce 
neovascularisation, herpes simplex virus-induced angio-
genesis as well as against lesions of stromal keratitis 
[324].

However, delivery strategies that defend the siRNAs 
from degradation and are suitable for prolonging the gene 
silencing activity would help to improve the efficacy of 
RNAi-based therapies for ocular pathologies. Incorporat-
ing the siRNA into a carrier with chemical modification 
can relatively overcome the aforementioned limitations. 
The applicability of the carrier varies from one tissue to 
another, so careful in vitro testing in physiologically rel-
evant tissue models is required to select the ideal siRNA 
delivery system for the target of interest [350].

CRISPR/CAS9‑mediated genome editing in the retina
Clustered Regularly Interspaced Short Palindromic 
Repeat (CRISPR)/ CRISPR-associated protein 9 (Cas9) 
system is a more powerful tool to edit the genome. 
CRISPR/Cas9 system was found in bacteria and archaea 
as a protective method of evading viruses, and other for-
eign nucleic acids [359–361]. CRISPR/Cas9 technique, 
as an accurate efficient, and powerful means of multiplex 
gene editing, requires a short guide RNA (sgRNA), which 
makes it more accessible than other techniques in dis-
ease modelling and gene therapy exploration [362–364]. 

CRISPR/Cas9 system consists of two main components. 
The first component of the CRISPR/Cas 9 is an RNA 
molecule known as the guide RNA (gRNA), which finds 
and binds to the sequence of DNA that must be edited. 
The second component of the CRISPR-Cas9 system is 
a non-specific CRISPR-associated endonuclease Cas9 
which is responsible for locating and cleaving target 
DNA [365]. In CRISPR/Cas9 technologies, double-strand 
breaks (DSBs) form target loci, as a consequence of the 
direction of single-guide RNA (sgRNA) to Cas9. Homol-
ogy-directed repair (HDR) or non-homologous end join-
ing (NHEJ) processes have been used for DSBs editing 
[366–368]. Due to the absence of a DNA template for the 
NHEJ repair pathway, this process is random and hence 
extremely error-prone, and can introduce additional 
insertions and deletions (indel) in DSBs. So, NHEJ has 
been extensively used for gene deletion [369].

CRISPR/Cas9-mediated gene therapy is known as a 
powerful multiplex gene editing modality owing to the 
ability to introduce or knock out multiple genes. Benja-
min et  al. applied a subretinal injection of gRNA/Cas9 
plasmid in rat models of autosomal dominant RP. They 
found that the CRISPR/Cas9 system could cut off the 
RHO gene carrying the dominant S334ter mutation, lead-
ing to prevent retinal degeneration, and consequently, an 
improved visual function [370]. Moreover, Lattela et  al. 
applied CRISPR/Cas9 technology for editing the human 
RHO gene in a mouse model with autosomal dominant 
RP. Their results confirmed that the effectiveness of the 
CRISPR/Cas9 system as a valuable and powerful method 
for gene-editing in PRs [371]. The knockout of the Nrl 
gene, as a crucial player in rod cell fate, in adult rods 
leads to the loss of rod function. Yu et al. applied (AAV)-
mediated CRISPR/Cas9 delivery to post-mitotic photore-
ceptors. The results showed that CRISPR/Cas9-mediated 
Nrl disruption improves rod survival, consequently pre-
venting secondary cone degeneration [372]. Generally, 
CRISPR/Cas9 technology seems to be a powerful tool 
to edit the genome specifically and effectively in retinal 
degeneration. However, off-target effect can alter the 
function of a gene and may result in genomic instability, 
which is a major challenge in bringing this technique for-
ward. Although targeting specificity of Cas9 is firmly reg-
ulated by sgRNA, its off-target cleavage potential activity 
could occur on DNA thereby leading to three or five base 
pair mismaches. This disadvantage prevents its prospec-
tive in the clinical procedure [373, 374].

Regenerative therapies using genetic modification
As mentioned above, numerous genes are known to 
be involved in retinal dystrophy. Mutations in genes 
involved photo transduction or retinoid cycle (which are 
integrated) [375, 376], gene encoding proteins involved 
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in ciliary function [377], and structural proteins have all 
been identified as causing the various forms of PR degen-
eration [378]. So, these disorders might have prone to be 
treated by gene therapy technology. A summary of the 
research into gene replacement therapy will be discussed 
in the following section.

Phototransduction and  visual cycle pathway  The PR is 
liable for light retention and conversion to an electrical 
signal, next is transmitted to other neurons of the retina 
and thereupon to the brain [379]. The OS of PRs posi-
tioned bordering to the RPE layer is a specific fragment 
exclusively designed to accomplish phototransduction 
[380]. This mechanism involves a series of signaling pro-
teins being sequentially triggered, leading to the eventual 
opening or closing of ion channels in the PRs membrane 
(Fig. 5) [381].

Phototransduction is the process by which, light 
is absorbed by a visual pigment molecule in PRs, and 
generates an electrical response. This cascade of cones 
and rods differs in their signal intensification and inac-
tivation, which is based on their respective functions 
[382]. In this enzymatic cascade in the vertebrate and 

invertebrate, photons captured in the outer segments 
of the PR bring about the cascade, resulting in the 
closure of a fraction of the cGMP-gated channels in 
the cell membrane [383]. In other words, in the pres-
ence of light, the cGMP-gated channel flow Na+ and 
Ca2+ ions into the OS and thus play an essential role in 
phototransduction [384]. The overview of the molecu-
lar mechanisms of phototransduction indicated this 
cascade is initiated by light-induced isomerization of 
the 11-cis configuration of retinal (the visual pigment 
in opsin) to the light-insensitive all-trans form. Light 
absorption occurs by the chromophore as a particu-
lar isomer of vitamin A as visual pigments of rods and 
cones [383]. Light intake leads to phototransduction 
cascade, which results in PR hyperpolarization and 
arrest of glutamate secretion at their synaptic terminal 
[383, 385]. Entirely, activation of the phototransduction 
cascade can be broken down into four steps [386].

	 i.	 Activation of Rhodopsin: when a photon converts 
the ll-cis retinal chromophore of RHO to its all-
trans isomer, photoexcitation is initiated conse-
quently RHO molecule activation.

Fig. 5  visual cycle pathway. Schematic representation of the phototransduction cascade and the visual cycle. In the left, the outer segment of PR 
was surrounded by the microvilli of the RPE apical membrane. In close, the biochemical events of RPE/ PR interaction have been presented. Upon 
light absorption by 11-cis-retinal opsin (inactive rhodopsin), the 11-cis- retinal rapidly is photo-isomerized to all-trans-retinal to form activated 
rhodopsin which in turn activates the heterotrimeric G-protein transducin and initiates the downstream signaling
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	 ii.	 Activation of the G-protein: The activated receptor 
protein (RHO) stimulates the G-protein transduc-
tion. In this process, guanosine 5´-triphosphate 
(GTP) is converted to guanosine diphosphate 
(GDP).

	iii.	 Activation of the phosphodiesterase (PDE): In turn, 
activated transducing, activates the effector protein 
phosphodiesterase, which results in the activation 
of PDE and the hydrolysis of cGMP to 5’-GMP.

	iv.	 Closure of Ion channels: The decrease in intracel-
lular cGMP leads to the closure of the cGMP-gated 
channels and then rod cells become hyperpolar-
ized.

Falling concentrations of cGMP also result in Ca2+ 
levels reduction in the outer segment consequently the 
exchange of Na/Ca-K continues to extrude Ca2+ from the 
outer segment.

The Gα-GTP activates phosphodiesterase (PDE), active 
PDE hydrolyzes cGMP (cG) to GMP. The decrease in cG 
concentration leads to the closure of the cG-gated chan-
nels, resulting in membrane hyperpolarization. New cG 
is resynthesized by guanylate cyclase (GC). Rhodopsin 
kinase (GRK) deactivates the rhodopsin by phosphoryla-
tion at multiple sites. Arrestin binds to the active phos-
phorylated rhodopsin to reduce its signaling to further 
transducin. The covalent bond between all-trans-retinal 
and opsin is hydrolyzed. Following this, all-trans-retinal 
is transported out of the lumen of photoreceptor disk 
membranes by the ATP-binding cassette transporter 
(ABCA4). Subsequently, the all-trans-retinal is reduced 
to all-trans-retinol in the reaction catalyzed by all-trans-
retinol dehydrogenases (atRDH) and interphotorecep-
tor retinoid-binding protein (IRBP) and cellular retinol 
binding protein 1 (CRBP1) facilitate its transportation 
back to the RPE. In the RPE, all-trans-retinol is esterfied 
to all-trans-retinyl-ester by lecithin retinol acyltrans-
ferase (LRAT). RPE65 converts these retinyl esters to 
11-cis-retinol. Subsequently, it oxidized to 11-cis-retinal 
by 11-cis-RDH. This molecule transports back to photo-
receptors to complete the retinoid cycle by recombina-
tion with opsin to form the inactive rhodopsin. Diseases 
that result from mutations in proteins involved in the 
phototransduction cascade and the visual cycle are indi-
cated in red boxes. Retinitis pigmentosa (RP), Congeni-
tal stationary night blindness (CSNB), Leber congenital 
amaurosis (LCA), Achromatopsia (ACHM), Bothnia dys-
trophy (BD),Cone-rod dystrophy (CRD), Stargardt’s dis-
ease (SGD), Age-related macular degeneration (AMD), 
Fundus albipunctatus (FA), Progressive retinal atrophy 
(PRA).

The genetically complex multifactorial cause of PR 
degeneration is exploring, attempting to uncover the 

cellular mechanisms underlying hereditary PR degen-
eration that would require knowledge regarding the 
enormous genetic heterogeneity of this disease group 
[38]. To date, the constructions and functions of visual 
phototransduction proteins and their roles in human 
retinal are also under explored. Many ocular diseases 
arise from abnormalities in retinoid related visual cycle 
proteins [387]. As mentioned above, signal transduc-
tion in the visual cycle happens due to a G protein-
coupled receptor (GPCR) called opsin, which contains 
an 11-cis-retinal chromophore [388]. The combined 
changes in the receptor potentials of rods and cones 
trigger nerve impulses that our brain takes as vision 
[387]. G protein-coupled receptor; is light sensitive 
which contains an 11-cis-retinal chromophore [389]. 
One form of autosomal main RP (classified as rod-
cone dystrophy) is attendant with a missense mutation, 
A346P, sited in the RHO gene. Data has been shown 
that this mutation restricts with normal regenera-
tion of photoreceptors. Mutations consequential in a 
mutant RHO protein relates with the autosomal reces-
sive disease. Thus, advanced central vision is a result 
of PRs cells shortage [390, 391]. RPE65 is a member of 
the carotenoid oxygenase family which is crucial for 
the proper function of the visual cycle. Thus, RPE65 
mutation cause to prominent retinal abnormalities 
and dysfunction at birth. Moreover, RHO levels are 
significantly reduced in the RPE65 mutant [375, 392]. 
Mutations in RPE65 are associated with autosomal 
recessive retinitis pigmentosa. Over the past decade 
RPE65 model has been largely considered as an objec-
tive for gene therapy. Successful RPE65 gene therapy 
has also been displayed using the Swedish Briard dog 
model [393]. Recombinant AAV (rAAV) was injected 
subretinally at a variety of ages from 1 month to 4 years 
and resulted in significantly improved visual function 
(ERG), retinoid content, and visual behavior. Defects 
in the RPE65 gene lead to canine and mouse models 
of LCA which have recently been considered as mod-
els for gene therapy [394–396]. As to date, Voretigene 
neparvovec-rzyl (Luxturna, Spark Therapeutics, Phila-
delphia) was approved by U.S FDA for ocular gene ther-
apy of RPE65 in 2017, which transduces some RPE cells 
with a cDNA encoding normal human RPE65 protein, 
making it possible to repair the visual cycle [397, 398]. 
Currently, human clinical trials using a similar vec-
tor are continuing. Clinical tails for ocular gene ther-
apy were initiated through subretinal injection of an 
AAV2 vector carrying a normal human RPE65 cDNA 
for LCA2 patients (NCT00481546, NCT00516477, and 
NCT00643747) [399–405] which results in substantial 
visual enhancement [406, 407].
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The common causation of STGD is a mutation in the 
ABC transporter A4 (ABCA4) gene. ABCA4 is located in 
the rim of the rod outer segment disc and the OS of the 
cones. ABCA4 deficiency leads to a toxic accumulation of 
all-trans-retinal leading to inherited retinal disease and 
eventually PRs death [408]. The major improvements in 
therapeutic applications for ABCA4 gene therapy have 
been established despite ABCA4 has been thought to be 
difficult to research [409, 410]. Allocca and colleagues 
injected AV2/5 containing Abca4 subretinally in an 
Abca4−/− mouse model of STGD and observed improve-
ment in the morphology and function of the retina for up 
to 5 months [411].

Interphotoreceptor retinoid-binding protein (IRBP) 
that is the major protein component of the interphotore-
ceptor matrix (IPM) and interacts with the cone “matrix 
sheath is secreted by PRs into the subretinal [412]. IRBP 
plays a role in the canonical visual cycle containing reti-
noid interchange between rods and RPE cells [413]. The 
reduction of IRBP in patients may contribute toward 
the advancement of diabetic retinopathy [414]. Because 
IPM acts as a physical barrier, so modifying IPM struc-
ture leads to a reduction of retina adherence to the RPE 
as a consequence of specific enzymes [316]. Subretinal 
injection of these enzymes (neuraminidase X and chon-
droitinase ABC) could lead to modify IPM and facilitat-
ing the lentiviral transduction of photoreceptors. This 
research group observed the increase in the number of 
GFP-positive photoreceptors when these cells were co-
injected by lentivirus-Rho-GFP and neuraminidase. This 
finding showed that lentiviral vector transduction was 
improved in the presence of neuraminidase X [317].

Ciliary proteins (Intracellular trafficking proteins)  The 
photoreceptors are ciliated cells and have connecting 
cilium (CC), which is structurally similar to the primary 
cilium. Therefore, retinal degeneration due to PR death 
is caused by any defect or disruption in ciliary trafficking 
has huge consequences. Mutations in a variety of photo-
receptor-specific and common cilia genes can cause rapid 
degeneration of photoreceptor OS and sensory cilia, con-
sequently IRD [415]. Most of these genes are responsible 
for the OS development and thus involved in trafficking 
of specific OS-resident proteins in photoreceptors [416]. 
All the proteins associated with phototransduction are 
synthesised in the inner IS and then must be trafficked 
through the CC to reach the OS [417].

Precise regulation of all molecules delivered to the cili-
ary membrane is required for its correct development 
and function. Data have been reported that Bardet-
Biedl syndrome (BBS) proteins seem to be involved in 
the trafficking of the vesicle from the golgi apparatus to 
the ciliary membrane [418] and in the actin dynamics to 

regulate ciliogenesis [419]. Viral AAV vectors transfected 
in the BBS1 mutant mice and subretinally were injected 
to restore BBS protein formation and RHO localisation 
thus showing trends toward improved electroretinogram 
function in mice [420].

There are many pieces of evidence that demonstrated 
that proteins encoded by the Usher genes play a crucial 
role in the cilia function of PRs [421]. Usher syndrome 
is a common form of syndromic retinal defect which is 
caused by mutations in the Usher genes. The most com-
mon form of Usher syndrome is Usher type 1B, which 
is caused by myosin VIIa (MYO7A) mutation that is 
expressed in the RPE, and PR connecting cilium and 
synapse [422]. MYO7A is an actin-linked motor protein 
that plays a key role in the trafficking along filaments and 
clearance of opsin at the connecting cilium [423]. Thus, 
the mutation in MYO7A leads to the accumulation of 
opsin at the connecting cilium, consequently disk mem-
brane morphogenesis impairment [424]. Data from a 
study showed that the defects in USH proteins are related 
to retinal degeneration diseases [425]. Thus, gene therapy 
is a valuable approach to rescue the Usher syndrome 
phenotype. MYO7A gene is 100  kb in size and making 
its AAV-mediated delivery problematic and leading to a 
focus on lentiviral delivery of MYO7A. For this, Hashi-
moto et  al. applied lentiviral gene therapy to introduce 
MYO7A cDNA to the retina of null mice and observed 
appropriate levels of myosin protein and subsequently 
opsin clearance from the connecting cilium [426]. Dual 
AAV vector and fragment AAV (fAAV) delivery can 
transfer genes with a larger size than AAV alone. Dyka 
et al. observed that dual AAV/fAAV delivery of MYO7A 
to the retina of shaker-1 mice resulted in the appropriate 
gene expression [427]. Moreover, Lopes et  al. observed 
that AAV2/5-mediated MYO7A delivery to the retinas of 
MYO7A -mutant mice corrected the mutant phenotypes 
in RPE and PRs. They could deliver full-length MYO7A 
to RPE and PRs [428]. Since PRs are the source of the 
initial expression of the disease, it is evident that this cell 
type needs to be adequately transduced in patients with 
Ush b1 [422]. So, it seems that the AVV vector is more 
suitable for the delivery of wild type MYO7A to both RPE 
and PRs. Besides, nanoparticle delivery of the Usher gene, 
thanks to their large packaging capacity, enhances the 
potential for Usher mutation treatment [429]. The results 
of animal studies finally have resulted in a phase I/II clini-
cal trial which is currently in progress (NCT02065011), 
whears another clinical study has stopped not for safety 
reasons (NCT01505062) which was evaluating safety and 
tolerability of ascending doses of subretinal injections.

The retinitis pigmentosa GTPase regulator (RPGR) 
gene is located on the short arm of the X-chromosome. 
RPGR has a role in the trafficking of opsin from the 
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IS to the OS of PRs [430]. Therefore, the mutation in 
the RPGR gene leads to mislocalization of opsin and 
then PR degeneration. The RPGR gene encodes a dif-
ferent form of RPGR. ORF15 isoform of RPGR is pre-
sent in PRs [431]. RPGR interacting protein (RPGR-IP) 
is expressed in PRs at the connecting cilium and is 
required for localization of RPGR at this site [432]. 
Research has been demonstrated that mutations in the 
RPGR-IP are associated with LCA. As such, the first 
clinical trial was performed by Fischer and his col-
leagues in March 2017. They injected AAV2/8-medi-
ated codon optimized human RPGRORF15 subretinally 
in males [433]. Zhao et  al. showed that PR function 
could be improved using AAV-2-mediated expression 
of RPGR-IP, leading to the restoration of RPGR con-
necting cilium [434]. Rachel et  al. showed that deliv-
ered myosin tail domain could retain ciliogenesis and 
PR function in rd16 mice [435]. Moreover, Beltran 
et al. applied the subretinal AAV2/5-mediated delivery 
of RPGR to the XLRAPA2 canine model and observed 
improvement of PR function [436]. Interestingly, clini-
cal gene therapy for retinal neuroprotection in retinitis 
pigmentosa is in progress using AAV. (NCT03116113) 
was the first human study associated with X-linked 
retinitis pigmentosa (XLRP) which applied AAV8 
vector-based gene therapy. Moreover, the safety and 
effectiveness of a recombinant AAV (rAAV2tYF-
GRK1-RPGR) in patients with XLRP caused by muta-
tions in ORF15 is evaluating in other clinical trial 
(NCT03316560). Furthremeore, a phase I/II clinical 
trial applying of AVV2/5 vector was initiated to carry 
PRGR in patients with XLRP (NCT03252847).

Structural proteins (disk morphogenesis)  Photosensory 
organelle OS is derived from a primary non-motile cilium. 
Disruption of the OS renewal process leads to a broad 
range of retina degenerative diseases. These OS contain 
a stack of closed flattened membranous sacs called disks. 
OS develops continuously through the OS renewal pro-
cess, and the new disks displace present disks. This pro-
cess required regulated membrane fusion which occurs 
to maintain an ordered arrangement of disks and physi-
ological functions [437]. The  Prph2 gene encodes a tet-
raspanin protein known as peripherin-2 (also known as 
peripherin/rds) that plays a critical role in the formation, 
maintenance, and renewal of these structres [438] and is 
located in the rim of the disk membrane [439, 440].

Peripherin/rds (P/rds), forms homo-oligomers or het-
ero-oligomeric structures with ROM1, which is another 
structurally related disc membrane protein. This pro-
tein is encoded by ROM1 gene and is necessary for disk 
morphogenesis [440, 441]. In mice, the absence of P/
rds leads to RDS without OSs that eventually limited 

phototransduction capability and loss of PR viability 
[442]. Data have been demonstrated that the mutation in 
the P/rds gene results in retinal degeneration [443]. The 
subretinal delivery of AAV2 carrying the Prh2 transgene 
could restore the correction formation of the photore-
ceptor disk [444]. Ali et al. have used an AAV-mediated 
delivery of PRPH2 PrhRd2/Rd2 in the young animal and 
observed PR restoration functionally [444]. This group 
showed that OS induction was performed after AAV 
subretinal injection in the old animals [445]. Moreover, 
Georgiadis and colleagues showed that AAV-delivered 
microRNA to knock down Prph2 mRNA in the mouse 
retina [445].

In addition to the viral gene therapy, Cai et al. showed 
that nanoparticle-mediated gene delivery revives cone 
function to a near-normal level compared to naked plas-
mid DNA delivery. They found that DNA-nanoparticles 
can effectively transfect both mitotic and post-mitotic 
(terminally differentiated) retinal cells [446].

In conclusion, disruption of the proteins involved in 
the structure or function of PRs results in a wide vari-
ety of phenotypes, so that gene therapy may be used as 
a promising applicant for the improvement of these 
impairments. Gene therapy would be a useful application 
for the restoring of structures and functions in animal 
models.

In the current review, we tried to present all the signifi-
cant reports regarding the status of gene therapy in IRDs. 
Some IRDs seem to be more feasible for future gene ther-
apy, whereas further studies are necessary for other ones. 
Although the safety profile of gene therapy is the main 
limitation, adenovirus, AAV, and lentivirus have all been 
applied to replace disrupted genes in IRD [447, 448]. 
Overall, gene therapy has been investigated as a useful 
and potent therapeutic approach for the restoring of reti-
nal function and treatment of visual impairments in clini-
cal trials, with certain limitations (like safety aspects and 
clinical efficacy) that remain to be overcome.

Optogenetic approaches
Unfortunately, the death of PRs remains inevitable in 
most cases to date. The renewing of PRs or the restoration 
of retinal light responses provides the only retina-based 
strategy that could recover vision after PRs have been 
destroyed. The use of optogenetics and chemical-based 
photos witches has recently been one of the effective 
alternatives for applying these techniques [449]. Optoge-
netic therapy is a promising approach in a degenerated 
retina that has lost the light-sensitive photoreceptor 
cells, specifically in inherited retinal disease, incorpo-
rating neurobiology and genetic engineering techniques 
to restore vision through the supply of light-sensitive 
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molecules to surviving retinal cell types that enable light-
sensing through the residual neurons [2, 3].

Critical to the efficacy of this strategy is the availability 
of appropriate light sensors. These sensors have geneti-
cally expressed the gene of light-sensitive proteins, such 
as channelrhodopsin (ChR) or halorhodopsin (NpHR), to 
induce light-sensitivity in remaining retinal cells [3–5]. 
Since PRs are naturally sensitive to light, optogenetic 
tools can be used to restore retinal photosensitivity [6]. 
Cell membrane potential can be also modified by light 
consequencing. Cell’s intrinsic membrane photosensi-
tive channels or receptors which are required in regulat-
ing the neuronal activity. These photosensitive molecules 
which are known as optopharmacological photoswitches 
contain two linked components including ligand and 
photoisomerizable group [7]. The revocable change of 
the photoisomerizable group from all-trans to cis config-
uration organized by light modifies the capability of the 
ligand to block/unblock channels or to activate/inactivate 
receptors [8].

The first optogenetic therapy to recover visual sensitiv-
ity by targeting retinal cell types was performed using an 
intravitreous injection of AAVs expressing ChR2 with a 
specific promoter sequence [2]. Optogenetic approaches 
commonly target remaining cells that represent at least a 
minor portion of IRD. Garita-Hernandez and colleagues 
showed that optogenetically-transformed photorecep-
tors could restore visual function in blind mice lacking 
the photoreceptor layer, as well as behaviourally [450]. 
Moreover, visual function was restored via co-expression 
of ChR2/ HaloR in RGCs in the retina after the death 
of rod and cone photoreceptors [451]. Also, Busskamp 
et  al. showed the visual restoration in the retina of ani-
mal models of RP using the chloride pump halorhodop-
sin, [9]. To date, trials suggest that optogenetic therapies 
show great potential promise in patients with advanced 
hereditary retinal disease to restore vision, and further 
clinical research is required as the next major step in 
advancing the field. Capabilities of visual function can be 
enhanced using of optogenetic therapy in combination 
with other therapies such as cell therapy and neuropro-
tection in preclinical animal studies [2, 4, 10, 11].

Cell based therapies
As mentioned before, following the progression of vis-
ual impairments, the neural retinal layer is gradually 
destroyed and therefore, the administration of neuropro-
tection drugs or gene therapy alone could not improve 
the visual abilities, and the injured cells need to be 
replaced by healthy ones.

Cell therapies are a popular treatment strategy for the 
late stages of PR degeneration, where the conventional 
protein or chemicalbased methods are not effective. 

When an incompletely differentiated cell type is trans-
planted to a certain area of the body, signals received 
from the microenvironment can be expected to affect 
cellular phenotype. This variability in potential cell fate 
makes some challenges in applying stem cell therapy, 
which will be discussed later. Cell therapy can improve 
transplant outcomes via two main approaches. First, 
the injected cells could replace damaged cells and repli-
cate their normal activities in the recipient site. Second, 
there is a possibility of secreting biological factors that 
provide a modified microenvironment supporting tissue 
regeneration, renewal of impaired cell activities, and host 
neuron survival, as discussed previously. In the follow-
ing sections, different cell sources for differentiation and 
replacement therapies will be highlighted.

Current differentiation strategies
Cell therapy is one of the promising treatments suggested 
for replacement in some advanced cell impairments. 
Different cell sources have been used in transplantation 
according to the accessibility of the cells source, ethical 
issues and the number of cells required for transplanta-
tion. Also, the transplantation of the cells in an appropri-
ate stage of development is another area of consideration.

A differentiation process can occur through three dif-
ferent mechanisms as follows: spontaneous, direct, or 
co-culture methods. In spontaneous differentiation, the 
cells were undergoing differentiation based on their own 
growth factor secretion [452, 453]. Therefore, a variety of 
cells were produced, and the efficiency of differentiation 
was decreased due to the variation of the produced cells. 
The direct differentiation process was taken through 
stepwise modulation of signalling pathways using spe-
cific activators or inhibitors. In most experiments, Wnt 
and BMP pathway inhibitors were used to direct the eye 
field differentiation [454–456]. Therefore, the cells were 
directed toward anterior neural ectoderm, which is con-
tinued by eye field differentiation. Activation of tyrosine 
kinase pathway by bFGF, EGF, and IGF could improve 
the yield of retinal differentiation [457]. Also, the reports 
have shown that according to in  vivo developmental 
events, the co-culture system could mediate cell differen-
tiation [458, 459].

Different cell sources
Fetal cells  Cells obtained from the fetus are capable 
of developing into the various cells of a defined tissue. 
Fetal neural stem cells (fNSCs), also known as neural 
progenitor cells (NPCs), can be isolated from fresh dis-
carded human fetal brain, or eye, in which case they are 
known as retinal progenitor cells (RPCs). These various 
neural progenitor cell types have already undergone con-
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siderable fate specification relative to pluripotent stem 
cells and, therefore, may or may not need to be further 
directed towards specific cell fate via various differentia-
tion protocols (Table 2). Administration of TGF-β3 [460] 
or Retinoic acid/T3 [461] appears to improve in  vitro 
and in vivo differentiation of the fNSCs into photorecep-
tors. Also, the co-culture of human RPCs with mouse 
retinas for two weeks influenced the differentiation effi-
ciency such that there was two-fold increased expression 
in specific markers of retinal cells [462]. hRPCs cultured 
in the presence of neuro-supplements N2 and B27 could 
maintain their innate state [463], at least transiently. Das 
et al., transplanted human fetal neuroretinal cells for the 
patients with advanced RP. A 40-month post surgery 
evaluation indicated no detrimental effects in clinical out-
comes [464]. In the other report, transplantation of fetal 
retina with RPE survived for one year showing continued 
improvement in visual acuity without rejection response 
[465]. The first FDA approved clinical trial using fetal 
RPCs (fRPCs) was carried out by Klassen et  al. for RP 
patients (NCT02320812) with accetable outcomes which 
is followed to phase IIb study (NCT03073733). Similar 
efforts were also carried out and 6–24 month follow-up 
showed biosafety and feasibility of hRPC transplantation 
which lead to progress towards future clinical trials [466]. 
Nevertheless, a range of considerations, including ethi-
cal and regulatory limitations imposed on the sourcing of 
cells from discarded fetuses, as well as the limited yields 
of cells of this type, have convinced many investigators to 
utilize adult stem cells whenever possible or, alternatively, 
pluripotent stem cells.

Adult cells  Adult stem cells are originated from the adult 
body and able to renew or repair generally all cells of the 
specific tissue with the same origin. The most used cells 
in the experimental studies include various populations 
of MSCs such as BM-MSC, umbilical cord blood-derived 
cells (UCBCs), dental stem cells (DSCs) and also the stem 
cells derived from another part of the eye like cilliary 
body epithelial cells (CEs), iris pigment epithelium cells 
(IPECs), and RSCs. There are some reports illustrating 
the differentiation ability of MSCs toward photoreceptors 
(Table  2). Genetically modification of Wharton’s jelly of 
umbilical cord MSCs with erythropoietin (EPO) gene in 
the presence of an induction medium containing taurine 
could increase rod photoreceptor differentiation yield 
[467]. Transdifferentiated cells from human exfoliated 
deciduous teeth (SHEDs) into photoreceptor-like cells 
according to a factor-cocktail protocol expressed specific 
markers of recoverin and opsin, and some in vitro Ca2+ 
activity and also maintained their survival after transplan-
tation in rat [468]. The induction potential of the cells in 
co-culture systems also might conduct stem cell differen-

tiation. The presence of hRPE in a co-culture system con-
ducted BM-MSCs differentiation towards photoreceptor-
like neurons expressing PKC and opsin [469]. Retinal 
stem cells derived from CE are another cell source for cell 
therapy experiments. The evidence showed that CEs iso-
lated from the retinal ciliary margin’s pars plicata and pars 
plana could maintain their multipotency potential by EGF 
and FGF. The observations showed that during 28 days, 
transplanted cells into the mouse eye were located in the 
photoreceptor layers and expressed specific markers of 
PRs [470]. Also, the CEs enriched by size, granularity, and 
low expression of P-cadherin could differentiate to rod 
PRs in the presence of exogenous supplements such as 
taurine and retinoic acid [471]. MSCs have been broadly 
investigated in clinical application for retinal disorders. In 
a non-randomized phase I clinical trial of 14 patients with 
RP intravitreally transplantation of BM-MSCs showed an 
improvement in visual functions [472]. In Phase III clini-
cal trial, the umbilical cord-MSCs (UC-MSCs) were intro-
duced for RP patients. At 6-month follow-up, about half 
of the patients showed improvmenet in visual criteria. In 
parallel, intravenous administration of UC-MSCs indi-
cated acceptable results with the successful efficiency of 
around 90% [473, 474]. The similar results have been also 
achieved by BM-MSCs [475–477]. Sub-tenon injection of 
placenta-derived mesenchymal stem cells (PD-MSC) res-
cued the RGCs and improved the visual acuity [478]. The 
MSC derived from wharton’s jelly (WJ-MSC) significantly 
improved best-corrected visual acuity (BCVA), visual 
field, and ONL thickness in phase III clinical trial [479]. 
The visual performance improvement without deterious 
side effects was also reported via subscleral space injec-
tion of Adipose-derived stem cells (ADSCs) [480].

Pluripotent stem cells  Pluripotent stem cells (PSCs) 
originated from the human blastocyst stage of embryo 
development (hESCs) or reprogrammed mature cells 
(iPSCs) are considered as an unlimited cell source for 
the treatment of degenerative diseases. Evidence began 
to accumulate that hESCs differentiation protocols 
towards the neural retinal cells, including PRs (Table 2). 
As described earlier, according to direct differentiation 
methods, inhibiting the Wnt and BMP pathways would 
improve anterior neural differentiation [454, 481]. In 
this method, the ESCs were cultured as floating aggre-
gates under serum-free conditions. The addition of 
DKK/Lefty to the culture medium could increase the 
efficiency of anterior neural differentiation. In parallel, 
inhibition of Wnt/BMP pathways provides a permis-
sive environment for forebrain development. Consistent 
with this, other studies were followed by some modifica-
tions to improve the differentiation efficiency. For exam-
ple, enrichment of the culture medium by neuroprotec-
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tive factors N2 and B27 and some growth factors like 
bFGF and EGF could improve the maintenance of retinal 
differentiation [452, 455, 482, 483]. Although, some oth-
ers components, such as taurine, Sonic hedgehog (Shh), 
or retinoic acid, could affect the differentiation potential 
of hESCs/hiPSCs towards neural retinal cells, particu-
larly photoreceptors [484–488]. Cells exit from the cell 
cycle by notch inhibitor DAPT, also increases the PR 
differentiation [489, 490]. As explained earlier, the co-
culture system directs the ESCs based on secreted fac-
tors distributed by the induction of adjacent cells after a 
certain period of time. The co-culture of hESC-derived 
RPCs with rabbit RPE could modulate rod photorecep-
tor differentiation by Nrl expression [491]. The recov-
erin + cells derived from hESC- RPCs have appeared 
in retinal explants of adult mice on 0.4-μm filters dur-
ing the co-culture system [454]. Some previous reports 
demonstrated the stromal-derived inducing activity 
(SDIA), which could be used in co-culture systems. The 
hESCs/hiPSCs were also induced to the eye field speci-
fication co-cultured with stem cells from apical papilla 
(SCAP) [458]. There is some evidence that high-density 
culture of hESCs/ hiPSCs leads to the secretion of Wnt 
and BMP signalling inhibitors such as DKK and Noggin, 
which is followed by eye field specification [452, 453].

Retinal organoids  An organoid is a 3D cell mass con-
taining stem cells in which cells are self-organized simi-
larly to in vivo counterparts [498, 499]. Organoids can be 
derived from different cell sources, including stem cells, 
embryonic/pluripotent stem cells, or even a single adult 
stem cell [500]. They can be utilized for understanding 
the characteristics of stem cells, the development of tis-
sues during embryogenesis, the regeneration processes 
in the adult tissues, providing a platform for drug screen-
ing or transplantation to damaged tissues [501]. Retinal 
organoids currently represent the great in  vitro quality 
characteristics to generate high amounts of PRs that can 
be further developed towards cell-based therapy applica-
tions [502].

The ability of hPSCs to generate retinal organoids open 
a road toward the generation of clinical cell populations 
for replacement therapies in the eye [483, 487, 503, 504]. 
Pioneer studies reported by Sasai research team showed 
the generation of 3D retinal organoids that closely follow 
in vivo retinogenesis [487, 505]. To improve the efficiency 
of retinal organoid formation, a trisection protocol was 
suggested that increased the yield of retinal organoids to 
183% [490]. Also, the combination of 2D/ 3D differentia-
tion protocols is useful to increase the efficiency of differ-
entiation. Studies in these protocols continue the isolated 
optic regions from the adherent cultures to suspension 
for further culture [506, 507]. Some results showed that 

the direct co-culture of hESCs with different mesenchy-
mal cells could improve the efficiency of optic vesicle and 
optic cup formation [508].

The presence of all major retinal cell types, includ-
ing PRs, in a highly organized construction, had been 
reported in pioneer retinal organoid publications [487, 
509]. In addition, the formation of highly specific struc-
tures like the ribbon synapse [506, 510] and OS [511, 512] 
was also described. Data have been reported that retinal 
organoids, including PRs showed the reactivity potential 
to light stimuli, and therefore, they pass the information 
to the inner retina such a physiological manner [513, 
514]. 3D retinal organoids offer a potential tool to either 
sort out the PR precursors [515] or directly use them like 
a sheet of retinal organoids for transplantation [516].

Cell delivery approaches
Regardless of the cell type, the methodology of the donor 
cell delivery is an important topic that should be con-
sidered. From the surgical point of view, there is a high 
chance of transplantation success in the retina as the 
eye is considered to be an immune privilege organ and 
its accessibility [69]. To achieve a successful cell replace-
ment, not only the isolation and generation of the desired 
cells but also the functionality of the survived cells after 
delivery to the target location is required [517]. The main 
strategies for cell delivery therapies are categorized into 
retinal cell suspension and tissue (sheet) transplantation.

Retinal cell suspension  Since cell suspension transplan-
tation is a controllable manner for experimental and pre-
clinical studies, until now, almost all of the strategies used 
for cell transplantation have been focused on cell suspen-
sion transplantation. Other than the selected route for cell 
delivery, which has been discussed before in this review, 
in most studies, the cell suspension was injected in the 
eye space by a syringe with common gauges 30–31. The 
Hamilton syringe is the most commonly used device for 
this purpose. The rate of cell delivery and the probably 
shear stress caused by injection on cell survival and cell 
deformity are important problems that should be consid-
ered [518–520]. Cromel’s study showed that the hRPCs 
carried by a gelatine-based gel through the 31-gauge nee-
dle revealed high levels of the survival, proliferation, and 
expression of the specific factors compared to the cells 
that were injected in PBS as the carrier [521]. Evidence 
showed limited successful transplantation in suspension 
manner because of the low number of integrated cells 
or cytoplasmic exchange. [145, 522, 523]. Therefore, the 
transplantation of the retinal sheet could be an effective 
replacement strategy.
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Tissue (sheet) transplantation  Conserving the donor 
PRs layered organization and structural channel guid-
ance, retinal sheet transplantation has been studied as 
an alternative strategy for cell delivery in PR degenera-
tion diseases [524]. The grafts derived from retinal-sheet 
transplantation, which are correctly located at the sub-
retinal space, are expected to develop outer and inner 
segments facing the host retina [525]. Additionally, it is 
observed that the graft survival of the sheet transplanta-
tion will enhance significantly in comparison with the cell 
suspension method (6–10  months post-transplantation 
[526] to 3–4 months post transplantation [72]).

However, treatment outcome mostly depends on the 
degeneration stage. In the early stage, single-cell suspen-
sion might support the remaining survived PRs, while at 
the late stages, a structured PR sheet will improve syn-
apse formation between the donor and host retinal cells.

Maintaining the architecture of the transplanted cells, 
tissue-engineered scaffolds consider an efficient modal-
ity for the donor cell delivery [527]. These scaffolds can 
conduct cell behaviour such as proliferation, adhesion, 
post-transplantation migration, ECM synthesis and 
differentiation while delivering the bioactive materi-
als [528]. In order to design a suitable scaffold for cell 
delivery purposes, some key factors to consider are bio-
compatibility (retain donor and host cell viability, not 
produce immunogenic response) [529, 530], biodegra-
dability (degrade after ECM production by donor cells) 
[531, 532], mechanical properties (flexible with low 
young modulus to mimic the retina tissue and mechani-
cally strong to withstand the surgical implantation) 
[533–536]. In addition to the mentioned factors, scaffold 
architecture is also key to achieve successful cell-scaffold 
delivery. To illustrate, appropriate scaffold porous struc-
ture and (surface topology can allow diffusion of nutri-
ent and conduct the graft formation [537–541]. To date, 
solvent casting, polymerization and grafting, phase sep-
aration, freeze drying, micro fabrication, and electro-
spinning are the main manufacturing methods used for 
these scaffold fabrication [542]. Natural and synthetic 
materials can be used as scaffolds substrate [543]. Some 
of the most common biomaterials applied in scaffolds 
are: natural polymers extracted from humans or animals 
(Hyaluronic acid, collagen, gelatine, fibrin) [544–547], 
natural polymers extracted from bacteria or plant (Hya-
luronic acid, alginate, cellulose) [548–550], synthetic 
polymers (poly-L-lactic acid (PLLA), poly lactic-co-
glycolic acid (PLGA), poly glycerol sebacate (PGS), poly 
e-caprolactone (PCL), poly ethylene glycol (PEG); poly 
methyl methacrylate (PMMA) in polymer composites 
[551] or alone) [552] and decellularized tissue (Bruch’s 
membrane, inner limiting membrane, amniotic mem-
brane) [553, 554]. Therefore, an appropriate selection of 

materials is a fundamental consideration in developing 
supportive scaffolds. As such, different functional groups 
on the surface of biomaterials can simulate different bio-
chemical signalling pathways. For example, Behtaj et  al. 
reported that a combination of advantageous surface and 
bulk properties of the aligned electrospun PGS/PCL scaf-
folds could promote RPC attachment and growth [555]. 
The readers are directed to the comprehensive reviews 
[556, 557] on the subject of scaffolds transplantation 
design aspects.

During scaffold based cell delivery, protection of host 
tissue and minimization of surgical invasion upon trans-
plantation as well as exploiting a cost-effective fabrication 
should be considered. For example, the invention of an 
injectable scrollable scaffold, which maintain the scaffolds 
unfold prior implementation could improve the trans-
plantation efficieny. Redenti et al. have designed a micro-
fabricated PGS scaffold, which demonstrated long-term 
mRPC survival and exhibited mature marker expression 
in host retina. The PGS–mRPC composites retained suf-
ficient elasticity to be scrolled and then injected via the 
sclerotomy into the subretinal space [558]. An alternative 
strategy to modulate the interaction between the donor 
cell and the scaffold surface is surface modification such 
as laminin coating [559], plasma technique,s and wet 
chemicals [560]. Oxygen and air plasma were observed 
to generate a more hydrophilic surface where attachment 
and growth of a human RPE cell line were enhanced [561, 
562]. Laminin coated scaffolds were also displayed mini-
mum folded/rosette shape and facilitated subsequent cell 
adhesion [559, 563]. Likewise, the biodegradability of the 
implanted scaffolds is desired due to the unique micro-
environment of the sub-retinal space and the possible 
damage to the host retina [564, 565]. Gandhi et. al have 
demonstrated the complete degradation of the fibrin-gel 
scaffold placed in the subretinal space within 8  weeks, 
with no damage to the neurosensory retina or endog-
enous RPE [566]. After degradation the sub-retinal space, 
which was generated artificially during transplantation, 
would disappear thus resulting in retina reattachment.

As mentioned earlier, PR cells have a highly apical-
basal polarized orientation. One of the challenges of PR 
transplantation is the polarization of the donor PR cells 
after grafting into the sub-retinal space. This might not 
happen via bolus injection of the cells. Jung et  al. [567] 
have developed a “wine glass” scaffold design (an array 
of cup-shaped PR capture wells that funnel into a micro-
channel) made from non-biodegradable polydimethyl-
siloxane and biodegradable PGS. This design was able 
to capture human pluripotent stem-cell-derived PR cell 
bodies and guide the basal axon extensions. Interestingly, 
several scaffolds for cell transplantation addressing the 
PR regeneration are in clinical trials assessment.
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Challenges for cell‑based therapies
Production of  a  complex retinal tissue  Previous stud-
ies have shown the injection of cell suspension into the 
subretinal or interavitreal space which has been reviewed 
by Gasparini et  al. [69]. Nevertheless, the injected cells 
showed low survival and limited ability to reorganize into 
a functional monolayer and often failed to regain a fully 
differentiated phenotype [564, 568]. Therefore, transplan-
tation of retinal cell layers could be replaced to improve 
transplantation efficiency. Also, different types of cells 
were impaired in some advanced visual disorders, and 
effective improvement was provided by transplantation of 
the retinal tissue structures.

Few studies have been published on the transplanta-
tion of retinal tissue containing RPE and PRs. The first 
one, reported by Armanat et  al., assessed the trans-
plantation of human retinal and RPE sheets in nude 
rats. Twelve months later, the RPE maintained its nor-
mal sheet morphology and supported the transplanted 
retinal laminations in some cases, but most PRs were 
developed as rosette-like structures [569]. These trans-
planted retinal sheets also presented some functional 
recovery in 30% of the rd1 end-stage retinal-degenera-
tion mice with a higher percentage of recoverin expres-
sion [570]. Besides the specific marker expression, the 
connections between different neural cells are very sig-
nificant after cell transplantation. Engrafted PRs from 
transplantation of fetal retinal sheets could be arranged 
as the rosette-like structures [521] and connect with 
the host retina [571]. Some years later because of some 
immune rejection aspects, most of the studies have 
been adjusted on 3D neural retinal sheets derived from 
pluripotent stem cells. They survived in the host reti-
nal and expressed specific markers of different neural 
retinal layers. Additionally, direct synaptic connections 
were also detected [572–574]. Although the hPSC- 
retinal organoid consisted of PR precursor cells, after 
transplantation, rod and cone cells were derived from 
transplanted organoids, and the rosette-like structures 
were detected within some inner cell layers. Also, the 
organization of differentiated retinal cells were not fol-
lowed the correct natural structures [516]. A one-year 
follow up showed the high competency to mature and 
respond to light stimulus [575]. Also, the recent result 
published by Salas et  al.showed that the cell therapy 
by co-transplantation of RPE and RPC conserved the 
survival and function of ONL superior to RPE or RPC 
[576]. Therefore, as the results presented, transplanta-
tion of complex retinal tissues could help to improve 
the results of future clinical applications and need to 
evaluate in more detail.

Optimization of  transplantation procedure  Folding or 
damaged structures Besides increasing studies about the 
complex retinal sheets formation and characterization, 
the delicate architecture of the retina and the orientation 
of the grafted structure requires further extensive inves-
tigations. A few recent studies have released their results 
about the possibility of the 3D structure transplantation 
at the correct orientation. According to their findings, 
the folded or damaged sheets were excluded from the 
experiments, and just the best position sheets were rec-
ommended for long-term follow-up [577]. Although this 
report is limited to the RPE layer injection, there is no evi-
dence of the optimization of retinal sheet transplantation 
in the posterior part of the eye. In order to achieve highly 
retina’s architecture, control of the retinal sheet transplan-
tation site is an important issue that should be noticed.

Transplantation techniques and instruments Some dif-
ficulties, including procedure visualization through small 
pupil windows and relatively larger lenses, are associ-
ated with sheet transplantation into smaller eye animal 
models, such as mice and rats. The larger vitreous cavity 
ratio in larger eyed animals, such as monkeys and rabbits, 
provides more space to insert devices while increases the 
experimental costs [578]. In both cases, successful trans-
plantation can be achieved when the delivery instrument 
would preserve the delicate tissue during transplantation 
manipulation, and handling of the tissue into the posi-
tion can be easily performed once they are in the sub-
retinal space[579]. Several customs made devices have 
been developed to facilitate the surgery. The following 
paragraphs explain some of these delivery instrument 
designs.

Kamao et al. have developed a surgical device for sub-
retinal transplantation of hiPSC–RPE cell sheets into 12 
rabbit eyes. This design consisted of a custom-design 
hand piece and a cannula. The cannula itself has two 
parts: a medical 20-gauge intravenous catheter, which 
can be reinforced using a custom-design blunt needle and 
a medical 1 mL syringe inserted into the plunger. Imple-
menting the surgical device, the surgeon would be capa-
ble of loading and ejecting the grafts with a single hand 
[577]. An alternative explant injector was built for the 
controlled delivery of the delicate sheet into the subreti-
nal or intraretinal space through a vitrectomy approach. 
The significant novelty of the proposed device is the 
invention of a perforated carrier platform at the tip of a 
cannula, which is protected via a second cannula and eas-
ily introduced through sclerotomy. The driven pressure 
is provided with a syringe attached to the plastic tubing. 
The same group has also proposed a modified instrument 
with a smaller size and an angled tip for human subreti-
nal surgery [579]. Some designs have utilized MEMS 
manipulators for cell sheet transplantation [580]. MEMS 



Page 33 of 52Karamali et al. Journal of Translational Medicine          (2022) 20:572 	

manipulators basically consist of three parts: a head, arm 
and base with interconnection. Employing the same prin-
ciples, an improved device has been constructed such 
that both MEMS manipulator and the needle can be 
controlled for precise positioning of the RPE sheet into 
the subretinal space. The movable MEMS manipulator 
and needle parts were driven by a driving bar to move 
MEMS manipulator itself and expose the head of MEMS 
manipulator, receptively [581]. Several efforts have been 
made to design an instrument capable of preserving RPE 
cell monolayer polarization required to restore vision. 
A study has developed a vitronectin-coated and mesh-
supported submicron parylene-C membrane to create 
a hESC-RPE confluent monolayer for subretinal imple-
mentation. The proposed device was found to preserve 
transplanted cells as an intact monolayer for 1 month in 
the subretinal space of the minipig eye [582]. Another 
study has designed and fabricated a bullet shaped cell 
carrier system made from rigid-elastic polyester mem-
brane with 0.4  μm pores [583]. They have found that 
gelatine encapsulation of the implants providing more 
control over the implementation process compared with 
“naked” implants. Moreover, a custom-designed shooter 
consisted of an angled nozzle, a non-stick plunger and an 
actuator was built to position the implants in the subreti-
nal space. The newly developed nozzle is flattened with 
drills on the surface. The proposed surgical techniques 
granted safe transvitreal delivery of the implant into the 
subretinal space of rabbits. Readers are encouraged to 
refer to references for more details about each design.

Appropriate cell number and cell stage during transplan‑
tation  Although there is a growing evidence showing 
the optimization of experimental protocols to achieve 
RPCs, insufficient donor cells for cell therapy studies 
due to the limited proliferative capacity of these cells is 
a critical point that needs to be resolved for RPC [584, 
585]. The optimal optogenic stage of PRs could affect the 
rate of integration following transplantation. A growing 
body of studies demonstrated that the RPCs expressing 
postmitotic marker Nrl had higher integration potential 
into host PR cells when they were compared to the neu-
ral retinal cells stated at earlier or later stage of develop-
ment [522, 586, 587]. After transplantation, the rod pre-
cursor cells exhibited morphological characteristics such 
as outer segment structure and expressed some synaptic 
proteins like bassoon and ribeye. By retaining the critical 
properties, the cells were integrated into the ONL of the 
host retina, and the visual acuity of the animal model was 
improved [574, 588]. The evaluation of the synaptogenesis 
following transplantation is important, and recently a new 
method named QUANTOS has been reported evaluating 
synaptogenesis during the development and regeneration 

of the retina. This method provides the quantitative and 
qualitative evaluation of synapses after cell transplanta-
tion [589].

Another challenge with cell transplantation, which has 
been addressed by recent protocols, is that transplan-
tation of a heterogeneous population leads to greatly 
reduced numbers of integrated cells. Recently, some 
approaches were assessed to address this limitation, 
including the enrichment of suitable cells for integration 
in the host retina. The results clarified that the cellular 
homogeneity, such as enrichment of the rod photorecep-
tor via specific cell surface marker CD73 could affect the 
transplantation outcome [590, 591]. A cone biomarker 
panel (SSEA1 − CD26 + CD133 + CD147 +) is also 
introduced for the purification of L/M-opsin cones. In 
contrast, there is no preliminary in vivo evidence about 
their behaviour after cell transplantation [463]. A two-
step immunopanning of antimacrophage antibody, fol-
lowed by anti-Thy1 antigen, facilitated retinal ganglion 
cells’ enrichment for further analysis [592]. Based on cell 
therapy’s important role in replacing the damaged or lost 
cells, identification and introduction of specific cell sur-
face markers should be magnified.

Establishment of Good Manufacturing Practices (GMP)‑com‑
pliant protocols for cell preparation  Although a large num-
ber of studies have been proceeded to improve the achieve-
ment of in vitro RPCs or PRs especially derived from hESCs/ 
hiPSCs, the important issue that should be considered in 
experimental and preclinical studies is the differentiation of 
the cells according to GMP protocols which there is some few 
evidence. As a pioneer study, Wiley reported the generation 
of hiPSCs from a patient with inherited retinal degeneration 
under ISO class 5 cGMP conditions. The neural epithelium 
was derived from hiPSCs by replacement of animal-derived 
matrigel and FBS with human ECM mixture and cGMP 
human grade serum, respectively. Further molecular analysis 
also confirmed the innate characteristics of cGMP grade hiP-
SCs- photoreceptor precursor cells [593]. Also, transplanta-
tion of the cGMP-manufactured human iPSC lines derived 
PR showed successfully integrated into the subretinal space of 
the immunodeficient host mouse eyes [594]. As the protocols 
develop, the field needs to keep in mind is that propagation 
and maintenance of the cells under GMP grade conditions is 
a critical issue that should be considered.

Type of donor cell  The cell sourcing is one of the key fac-
tors affected the final results of cell transplantation. In this 
regard, HLA matching which means the similarities of the 
leucocyte antigen between recipient and donor cells has 
a significant as well as population characteristics should 
be addressed. Some evidance showed that in compare to 
autograft BM-MSC, the allograft or xenograft transplan-
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tation could change the retinal functionality and anatomi-
cal structures in animal model. Beside the morphological 
changes, microglial activation and migration to surround 
donor cells in allotransplantation and xenotransplanta-
tions, which was followed by CD45+ cells recruitment, 
the expression level of anti-inflammatory proteins was 
significantly lower in autograft group [595]. In addition, 
some individual characteristic of donor such as weight 
[596], age [597] and the rate of health [598] might affect 
the transplantation efficiency. Though there is no report 
on retinal outcomes.

Visual prosthesis
At the late stages, when the approaches mentioned above 
are not effective anymore, the visual prosthesis can be 
used to create electrical impulses to substitute the elec-
trical stimulation that would normally be created by the 
PRs. Transcorneal electrostimulation would help patients 
who still have functional PR. Thus, bypassing failing parts 
of the visual pathway, the image information would be 
delivered to the healthy parts of the natural visual sys-
tem [245, 248, 599–601]. The idea of the visual prosthe-
sis is based on the production of phosphenes (white or 
coloured sparks of light with a structured appearance). A 
reliable phosphene can be obtained by careful optimiza-
tion of electrical stimulation parameters [602]. There are 
two approaches to stimulate retinal ganglion cells: (1) 
Directly (general prosthesis) or (2) Indirectly (optical-
sensor prosthesis) via the surviving network of retinal 
neurons.

The general prosthesis is composed of two modules: 
external and implanted. The external module of a gen-
eral prosthesis consists of a video camera, usually worn 
on eyeglasses, which is responsible for video capturing, 
image pre-processing and hence key image data trans-
mitting to the implant via a wireless interface. Photodi-
ode arrays [603], charge-coupled devices (CCDs) [604], 
and complementary metal-oxide semiconductor (CMOS) 
have been considered as image and video cameras for 
external modules of the general prosthesis [605]. Data 
first will be captured from the outside world, pre-pro-
cessed and then reduced to the amount compatible with 
the processing capabilities of the implanted device. In 
order to minimize the risk of infection, data and power 
convey mostly will be carried out via a wireless telem-
etry implemented by capacitive links. An embedded 
controller commands a microelectrode array to convert 
transmitted data into electrical activity with customized 
amplitude and pulse widths. Engineers, in collaboration 
with specialists in clinical and surgical fields, are working 
together to develop the visual prosthesis that can allow 
greater replication of the natural neural stimulation of 

the retina. Some of these efforts have been dedicated to 
alternative microelectrode materials that would amelio-
rate electrical signal production. Conductive polymers 
such as polypyrrole (PPy) [606], poly 3, 4-ethylenedioxy-
thiophene (PEDOT) [607–610], and polyaniline (PANI) 
[611] in the form of a conductive coating or electrode 
material have been reported to enhance electrode func-
tionality by lower impedance and higher charge injection 
limit. Nanomaterial such as carbon nanotubes (CNTs) 
[612–614], nanocrystalline diamonds (NCDs) [615–617] 
and silicon nanowires (SiNWs) [618, 619] have also 
offered enhanced properties to be presented as a prom-
ising substitute for electrode materials. Replacing metal 
electrodes with nanomaterials will improve electro-
chemical properties, neuron-electrode interaction, and 
electrical activation of retinal neurons due to unique sur-
face morphology and charge injection mechanism [601]. 
General prosthesis under trade name Argus II epiretinal 
device (Second Sight Medical Products, Inc., Sylmar, CA, 
USA) is commercially available as the first camera-based 
visual prosthesis [620].

Principally, the resolution depends on the number of 
stimulation sites. However, from the engineering point 
of view, there is a great interest to maximally benefit 
from the natural visual system [604]. In this regard, vari-
ous stimulation sites are considered: direct stimulation 
of visual cortex via cortical implant [621], stimulation of 
optic nerve via cuffs that encircle the optic nerve [622], 
stimulation of the lateral geniculate nucleus [623] and 
stimulation of the retina [624]. To interface the retina 
and the electrode array, the implantation would occur at 
three locations in the visual pathway: the epiretinal [620], 
the subretinal [625], and the suprachoroidal spaces [626, 
627]. Although each method has its own advantages and 
disadvantages, the appropriate approach will be deter-
mined depending on the cause of vision loss and the 
patient’s particular vision perception.

To indirectly stimulate the RGC, the rest of the system 
besides PRs (cornea, iris, and lens) must be healthy and 
functioning. The basic architecture of a visual prosthe-
sis, which is compared to the function of PRs, comprises 
a micro-photodiode array capable of converting incident 
light into electrical activity and delivering the resulting 
electrical stimuli to the retinal ganglion cells. This pros-
thesis is, thus, much more dependent on the qualities 
of the natural visual system [603, 628]. Fixation of the 
implant occurs at the sub-retinal space where the bipo-
lar cells (the next surviving layers of neurons in the vis-
ual pathway) present in the closest proximity [629, 630]. 
Contrary to the general prosthesis, an optical sensor 
prosthesis is, indeed, a single component with no need 
for an external camera. Thus, fewer components need to 
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be implanted, and natural eye movement would be used 
to locate the object [631]. However, in the absence of 
an external video camera, this system requires relatively 
high levels of light to effectively stimulate the adjacent 
neurons [628]. Two clinical trials are completed on opti-
cal sensor prosthesis under trade name Alpha IMS [620, 
625, 632, 633] and ASR microchip [630], in which Alpha 
IMS is commercially available.

Implantation of the photodiode array component at the 
sub-retinal space has some drawbacks, such as separat-
ing pigment epithelium and hurdle of blood flow from 
the retina. To address these limitations, Benfenati et  al. 
has recently developed a liquid retinal prosthesis with 
less invasive implantation, wide retinal coverage, and 
high spatial resolution. In this study, the nanoparticles 
of conjugated semiconducting polymer (poly [3-hex-
ylthiophene], P3HT NPs) were subretinally injected in 
a rat model of retinitis pigmentosa. P3HT NPs diffuse 
throughout the entire subretinal space, imitating the spa-
tial distribution of PRs and generating a light-sensitive 
interface with inner retinal neurons upon single nanopar-
ticles administration [634].

Despite all the progress made, patiants could only 
expect an artificial vision rather than vision restoration 
[635]. Significant challenges must be addresses to restore 
sight. Sufficient amount of visual information must be 
transmitted from the retina to the brain and interepra-
tation of the artificial visual information requires more 
advanced image processing techniques [636]. Electrode 
sizes must be reduced and biocompatibility of the embed-
ded materials with the neural tissue must be enhanced 
[637]. Though, research in artificial vision is a pioneering 
research activity in the medical field. One example is the 
the chemical retinal prosthesis, which pixelated release of 
neurotransmitter would use as RGC stimulation and has 
a long priod of preliminary works. To date, there is no 
report of a functioning one in animal models. However, it 
has several potential advantages over electrical prosthe-
sis including, the capacity to slow the processes driving 
remodelling and possibility of corelease of other chemical 
agents (e.g., trophic factors) [638]. With the progress in 
material and microfabrication mechanisms now it seems 
the time to test the first chemical retinal prosthesis. On 
the other hand, lateral geniculate nucleus (LGN) micro-
stimulation in animal models generated simple discrete 
visual percepts in a very few preclinical studies which 
makes it a feasible candidate for future [639, 640].

Conclusion and future prospects
Photoreceptor degenerations represent a group of multi-
factorial diseases that result in the common underlying 
problem of PR loss and irreversible visual deficits. This 
review has attempted to summarise the most promising 

treatment strategies in detail, even though at present 
few interventions have been approved cure for use in 
these disorders. Recent research findings focused on 
the early stage of visual disorders have shown that solu-
tions offered by PR neuroprotection hold much promise 
for future clinical advances. However, early detection of 
degeneration is important for the optimal implementa-
tion of neuroprotective modalities in clinical practice. As 
such, enhanced screening methods such as autofluores-
cence of flavoproteins, which permits detection of cel-
lular metabolic dysfunction in the retina, will likely play 
an important role [641, 642]. Similarly, an understand-
ing of underlying molecular mechanisms will give rise 
to novel neuroprotective strategies. Recently, metabolic 
reprogramming using enzymes involved in glycolysis or 
[251, 643] genetically reprogramming glycolysis [644] 
have improved overall PR survival. Likewise, some signal 
transductions may fundamentally regulate PR neuropro-
tection. Undoubtedly, the future of PR neuroprotection 
relies on elucidating the mechanisms of the signalling 
networks involved.

Accordingly, investigation of neuroprotective com-
pounds, metabolic reprogramming, and signal trans-
duction may provide solutions needed to overcome 
current limitations and lead to highly efficient PR neu-
roprotective protocols in the near future. Gene therapy 
is another promising strategy that has potential in the 
early stages of PR loss. AAV mediated gene delivery 
has been shown to offer the possibility of stable gene 
expression as a result of its low immunogenicity and 
have been used as vectors in several gene therapy tri-
als for retinal degenerations. Also, non-viral vectors 
and methods, such as electrotransfection, have been 
employed for transferring gene constructs [645]. In 
addition to vectors, genome editing by the CRISPER/
Cas9 technique shows promise for ocular therapy 
because of its ability to change or replace genes cor-
rectly [95]. While it is expected that early-stage of PR 
degeneration might be treated with gene therapy, treat-
ment of severely affected retinas in an advanced stage of 
the disease would likely require a combination of gene 
therapy together with additional strategies. Presented 
reports from the Paris Vision Institute and Germany 
clarified that cell and gene approaches would be syn-
ergistic to each other since functional outer segments 
are rarely found in transplanted PRs. In the late stage 
of retinal disorders, the transfection of PRs with micro-
bial opsin followed by the introduction of the corrected 
cells into the subretinal space would provide a novel 
approach to visual restoration [646]. As mentioned 
before, a large number of transplanted cells do not pass 
through the outer limiting membrane and are stopped 
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as the cell clump in the subretinal space [647]. These 
cells also receive some undesirable signals derived from 
an unhealthy microenvironment which might affect the 
final transplanted cell fate [648, 649]. Therefore, in PR 
degeneration, in which a variety of pathological aspects 
are involved. As such, vascular alterations culminating 
is another phenomena affecting the current therapeutic 
approaches by interruping cell signalling to the brain. 
Therefore, a combination of a wide range of therapeutic 
approaches is suggested [507]. Few investigations have 
been undertaken into the simultaneous injection of 
multiple cell types to provide both cell source replace-
ment and neurotropic agents that might improve the 
overall efficacy of transplantation. One example would 
be hRPCs differentiation and functionality, as measured 
by ERG, being improved using combined cell transplan-
tation with hBMSCs, which also resulted in suppression 
of gliosis and microglial activation [650]. Intravitreal 
administration of combined hematopoietic and meso-
dermal cells derived from iPSCs could improve vessel 
formation in diabetic retinopathy based on anti-inflam-
matory and antioxidative effects (NCT03403699). Dif-
ferent administrative routes for MSC use might also 
advance the therapeutic outcomes. For instance, intra-
vitreal injection of MSC in combination with subretinal 
administration of MSCs reduced the immunoreactiv-
ity and could be more effective as adjuvant therapy for 
future studies [651]. Therefore, it seems that the combi-
nation of different effective factors provided by various 
cell sources might improve the efficiency of cell ther-
apy in the future. Moreover, utilizing visual prosthesis, 
which allows low vision patients to identify infrared 
radiation and photothermal stimulations emitting from 
potential hazards such as hot drinks or an open fire, 
could determine future directions of this topic.

Although much work remains to overcome current 
limitations impacting the most significant therapeu-
tic strategies, including neuroprotection, gene and cell 
therapies, continuing research in the field should pave 
the way to the future restoration of vision in patients with 
progressive PR degeneration. It seems likely that a com-
bination of neuroprotective pharmacologic solutions, 
carefully-targeted gene therapies, and clinically safe cell 
transplantation approaches could generate synergistic 
clinical outcomes well beyond what is currently available 
to patients.
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