Skip to main content
Log in

Schizophrenia: From genes to phenes to disease

  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

This article provides an overview of the past year’s literature on schizophrenia genetics. Quantitative genetics continues to be an important foundation in which family and twin studies have been used to evaluate potential endophenotypes. Research in molecular genetics has focused on detecting multiple genes of small effect, and developments relating to key positional and functional candidate genes are reviewed. Large-scale, multicenter studies are proving to be important in this quest. Research using neuroimaging and animal modeling studies continues to link genotype with phenotype. It is increasingly apparent that some candidate genes considered important in schizophrenia are likely to be relevant to the etiology of other psychotic disorders, including bipolar disorder. This notion may challenge traditional disease classifications, not only in research but potentially in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Craddock N, O’Donovan MC, Owen MJ: The genetics of schizophrenia and bipolar disorder: dissecting psychosis. J Med Genet 2005, 42:193–204.

    Article  PubMed  CAS  Google Scholar 

  2. Lichtenstein P, Björk C, Hultman CM: Recurrence risks for schizophrenia in a Swedish national cohort. Psychol Med 2006, 36:1417–1425.

    Article  PubMed  Google Scholar 

  3. Craddock N, O’Donovan MC, Owen MJ: Phenotypic and genetic complexity of psychosis. Invited commentary on … schizophrenia: a common disease caused by multiple rare alleles. Br J Psychiatry 2007, 190:200–203.

    Article  PubMed  Google Scholar 

  4. Braff D, Schork NJ, Gottesman II: Endophenotyping schizophrenia. Am J Psychiatry 2007, 164:705–707.

    Article  PubMed  Google Scholar 

  5. Greenwood TA, Braff DL, Light GA, et al.: Initial heritability analyses of endophenotypic measures for schizophrenia: the consortium on the genetics of schizophrenia. Arch Gen Psychiatry 2007, 64:1242–1250.

    Article  PubMed  Google Scholar 

  6. Bearden CE, van Erp TG, Thompson PM: Cortical mapping of genotype-phenotype relationships in schizophrenia. Hum Brain Mapp 2007, 28:519–532.

    Article  PubMed  Google Scholar 

  7. Cannon TD, Keller MC: Endophenotypes in the genetic analyses of mental disorders. Annu Rev Clin Psychol 2006, 2:267–290.

    Article  PubMed  Google Scholar 

  8. Burdick KE, Goldberg TE, Funke B, et al.: DTNBP1 genotype influences cognitive decline in schizophrenia. Schizophr Res 2007, 89:169–172.

    Article  PubMed  Google Scholar 

  9. Hall MH, Rijsdijk F, Picchioni M, et al.: Substantial shared genetic influences on schizophrenia and event-related potentials. Am J Psychiatry 2007, 164:804–812.

    Article  PubMed  Google Scholar 

  10. Toulopoulou T, Picchioni M, Rijsdijk F, et al.: Substantial genetic overlap between neurocognition and schizophrenia: genetic modeling in twin samples. Arch Gen Psychiatry 2007, 64:1348–1355.

    Article  PubMed  Google Scholar 

  11. Karlsgodt KH, Glahn DC, van Erp TG, et al.: The relationship between performance and fMRI signal during working memory in patients with schizophrenia, unaffected co-twins, and control subjects. Schizophr Res 2007, 89:191–197.

    Article  PubMed  Google Scholar 

  12. McClellan JM, Susser E, King MC: Schizophrenia: a common disease caused by multiple rare alleles. Br J Psychiatry 2007, 190:194–199.

    Article  PubMed  Google Scholar 

  13. Crow TJ: How and why genetic linkage has not solved the problem of psychosis: review and hypothesis. Am J Psychiatry 2007, 164:13–21.

    Article  PubMed  Google Scholar 

  14. Faraone SV, Hwu HG, Liu CM, et al.: Genome scan of Han Chinese schizophrenia families from Taiwan: confirmation of linkage to 10q22.3. Am J Psychiatry 2006, 163:1760–1766.

    Article  PubMed  Google Scholar 

  15. Bulayeva KB, Glatt SJ, Bulayev OA, et al.: Genome-wide linkage scan of schizophrenia: a cross-isolate study. Genomics 2007, 89:167–177.

    Article  PubMed  CAS  Google Scholar 

  16. Fanous AH, Neale MC, Webb BT, et al.: A genome-wide scan for modifier loci in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2007, 144:589–595.

    Google Scholar 

  17. The Wellcome Trust Case Control Consortium: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007, 447:661–678.

    Article  Google Scholar 

  18. Owen MJ, Craddock N, Jablensky A: The genetic deconstruction of psychosis. Schizophr Bull 2007, 33:905–911.

    Article  PubMed  Google Scholar 

  19. Li D, He L: Association study between the dystrobrevin binding protein 1 gene (DTNBP1) and schizophrenia: a meta-analysis. Schizophr Res 2007, 96:112–118.

    Article  PubMed  Google Scholar 

  20. Bray NJ, Holmans PA, van den Bree MB, et al.: Cis-and trans-loci influence expression of the schizophrenia susceptibility gene DTNBP1. Hum Mol Genet 2008, 17:1169–1174.

    Article  PubMed  CAS  Google Scholar 

  21. DeRosse P, Funke B, Burdick KE, et al.: Dysbindin genotype and negative symptoms in schizophrenia. Am J Psychiatry 2006, 163:532–534.

    Article  PubMed  Google Scholar 

  22. Fanous AH, van den Oord EJ, Riley BP, et al.: Relationship between a high-risk haplotype in the DTNBP1 (dysbindin) gene and clinical features of schizophrenia. Am J Psychiatry 2005, 162:1824–1832.

    Article  PubMed  Google Scholar 

  23. Harrison PJ, Law AJ: Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biol Psychiatry 2006, 60:132–140.

    Article  PubMed  CAS  Google Scholar 

  24. Munafò MR, Attwood AS, Flint J: Neuregulin 1 genotype and schizophrenia. Schizophr Bull 2008, 34:9–12.

    Article  PubMed  Google Scholar 

  25. Turunen JA: The role of DTNBP1, NRG1, and AKT1 in the genetics of schizophrenia in Finland. Schizophr Res 2007, 91:27–36.

    Article  PubMed  Google Scholar 

  26. Thomson PA, Christoforou A, Morris SW, et al.: Association of neuregulin 1 with schizophrenia and bipolar disorder in a second cohort from the Scottish population. Mol Psychiatry 2007, 12:94–104.

    Article  PubMed  CAS  Google Scholar 

  27. Malhi GS, Lagopoulos J: Making sense of neuroimaging in psychiatry. Acta Psychiatr Scand 2008, 117:100–117.

    PubMed  CAS  Google Scholar 

  28. Konrad A, Winterer G: Disturbed structural connectivity in schizophrenia primary factor in pathology or epiphenomenon? Schizophr Bull 2008, 34:72–92.

    Article  PubMed  Google Scholar 

  29. O’Tuathaigh CM, Babovic D, O’Meara G, et al.: Susceptibility genes for schizophrenia: characterisation of mutant mouse models at the level of phenotypic behaviour. Neurosci Biobehav Rev 2007, 31:60–78.

    Article  PubMed  CAS  Google Scholar 

  30. Chubb JE, Bradshaw NJ, Soares DC, et al.: The DISC locus in psychiatric illness. Mol Psychiatry 2008, 13:36–64.

    Article  PubMed  CAS  Google Scholar 

  31. Matsuzaki S, Tohyama M: Molecular mechanism of schizophrenia with reference to disrupted-in-schizophrenia 1 (DISC1). Neurochem Int 2007, 51:165–172.

    Article  PubMed  CAS  Google Scholar 

  32. Mackie S, Millar JK, Porteous DJ: Role of DISC1 in neural development and schizophrenia. Curr Opin Neurobiol 2007, 17:95–102.

    Article  PubMed  CAS  Google Scholar 

  33. Sanders AR, Duan J, Levinson DF, et al.: No significant association of 14 candidate genes with schizophrenia in a large European ancestry sample: implications for psychiatric genetics. Am J Psychiatry 2008, 165:497–506.

    Article  PubMed  Google Scholar 

  34. Roberts RC: Schizophrenia in translation: disrupted in schizophrenia (DISC1): integrating clinical and basic findings. Schizophr Bull 2007, 33:11–15.

    Article  PubMed  Google Scholar 

  35. Garety PA, Bebbington P, Fowler D, et al.: Implications for neurobiological research of cognitive models of psychosis: a theoretical paper. Psychol Med 2007, 37:1377–1391.

    Article  PubMed  Google Scholar 

  36. Chumakov I, Blumenfeld M, Guerassimenko O, et al.: Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci U S A 2002, 99:13675–13680.

    Article  PubMed  CAS  Google Scholar 

  37. Corvin A, McGhee KA, Murphy K, et al.: Evidence for association and epistasis at the DAOA/G30 and D-amino acid oxidase loci in an Irish schizophrenia sample. Am J Med Genet B Neuropsychiatr Genet 2007, 144:949–953.

    Google Scholar 

  38. Wood LS, Pickering EH, Dechairo BM: Significant support for DAO as a schizophrenia susceptibility locus: examination of five genes putatively associated with schizophrenia. Biol Psychiatry 2007, 61:1195–1199.

    Article  PubMed  CAS  Google Scholar 

  39. Spurlock G, Williams J, McGuffin P, et al.: European multicentre association study of schizophrenia: a study of the DRD2 Ser311Cys and DRD3 Ser9Gly polymorphisms. Am J Med Genet 1998, 81:24–28.

    Article  PubMed  CAS  Google Scholar 

  40. Talkowski ME, Bamne M, Mansour H, et al.: Dopamine genes and schizophrenia: case closed or evidence pending? Schizophr Bull 2007, 33:1071–1081.

    Article  PubMed  Google Scholar 

  41. Yu R, Zhang XN, Huang XX, et al.: Association analysis of COMT polymorphisms and schizophrenia in a Chinese Han population: a case-control study. Am J Med Genet B Neuropsychiatr Genet 2007, 144:570–573.

    Google Scholar 

  42. Gothelf D, Feinstein C, Thompson T, et al.: Risk factors for the emergence of psychotic disorders in adolescents with 22q11.2 deletion syndrome. Am J Psychiatry 2007, 164:663–669.

    Article  PubMed  Google Scholar 

  43. Williams HJ, Owen MJ, O’Donovan MC: Is COMT a susceptibility gene for schizophrenia? Schizophr Bull 2007, 33:635–641.

    Article  PubMed  Google Scholar 

  44. Ma X, Sun J, Yao J, et al.: A quantitative association study between schizotypal traits and COMT, PRODH and BDNF genes in a healthy Chinese population. Psychiatry Res 2007, 153:7–15.

    Article  PubMed  CAS  Google Scholar 

  45. Zinkstok J, Schmitz N, van Amelsvoort T, et al.: Genetic variation in COMT and PRODH is associated with brain anatomy in patients with schizophrenia. Genes Brain Behav 2008, 7:61–69.

    PubMed  CAS  Google Scholar 

  46. Gilbody S, Lewis S, Lightfoot T: Methylenetetrahydrofolate reductase (MTHFR) genetic polymorphisms and psychiatric disorders: a HuGE review. Am J Epidemiol 2007, 165:1–13.

    Article  PubMed  Google Scholar 

  47. Gaysina D, Cohen S, Craddock N, et al.: No association with the 5,10-methylenetetrahydrofolate reductase gene and major depressive disorder: results of the depression case control (DeCC) study and a meta-analysis. Am J Med Genet B Neuropsychiatr Genet 2007 Dec 28 (Epub ahead of print).

  48. Farmer A, Elkin A, McGuffin P: The genetics of bipolar affective disorder. Curr Opin Psychiatry 2007, 20:8–12.

    Article  PubMed  Google Scholar 

  49. Lake CR, Hurwitz N: Schizoaffective disorder merges schizophrenia and bipolar disorders as one disease—there is no schizoaffective disorder. Curr Opin Psychiatry 2007, 20:365–379.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte L. Allan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allan, C.L., Cardno, A.G. & McGuffin, P. Schizophrenia: From genes to phenes to disease. Curr Psychiatry Rep 10, 339–343 (2008). https://doi.org/10.1007/s11920-008-0054-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-008-0054-x

Keywords

Navigation