Skip to main content

Regulation of Glycolysis

  • Conference paper
Biological Oxidations

Abstract

A study of regulation of glycolysis is directly related to the mechanisms coupling glycolytic reactions to other cellular processes to which glycolysis donates phosphoryl groups, reducing equivalents and carbon fragments for further oxidation, reduction, and biosynthesis. Any activation of the latter processes will lead to a corresponding and well-balanced activation of glycolysis. The problem of regulation is therefore related to the mechanisms of coupling: what are the coupling components and how do they interact, what are their stoichiometric relationships, what are the enzymic mechanisms involved, and to what extent do they have controlling functions? Over the years of Warburg’s century, the investigations of metabolic balance and stoichiometries made good use of the various effects which had been observed whenever metabolic states of glycolysis were influenced by oxygen, light, or multiple activators or inhibitors of cellular metabolism. These studies led to our current knowledge of the balance between processes of energy generation and energy utilization.

Article Note

In Memoriam Eraldo Antonini

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ALD:

aldolase

ENO:

enolase

FBPase I and II:

fructosebisphosphatase

GAPDH:

glyceraldehyde phosphate dehydrogenase

G6PDH:

glucose-6-phosphate dehydrogenase

PFK I and II:

phosphofructokinase

PGK:

phosphoglycerate kinase

PGM:

phosphoglycerate mutase

PK:

pyruvate kinase

PPC:

phosphopyruvate carboxylase

TIM:

triose phosphate isomerase

DAP:

dihydroxyacetone phosphate

FBP:

D-fructose-1,6-bisphosphate

F6P:

D-fructose-6-phosphate

GAP:

D-glyceraldehyde-3-phosphate

PEP:

phosphoenolpyruvate

EthOH:

ethanol

References

  1. Racker E (1975) In: Energy transducing mechanisms 3, MTP international review of science, University Park Press, Baltimore pp 163–183

    Google Scholar 

  2. Warburg O, Christian W (1939) Biochem Z 303: 40–68

    Google Scholar 

  3. Lynen F (1941) Justus Liebigs Ann Chem 546: 120–141

    Article  CAS  Google Scholar 

  4. Johnson MJ (1941) Science 94: 200–202

    Article  PubMed  CAS  Google Scholar 

  5. Hess B (1973) Organization of glycolysis: Oscillatory and stationary control. In: Rate control of biological processes, Cambridge pp 105–131

    Google Scholar 

  6. Sols A, Gancedo C, DelaFuente G (1971) Energy-Yielding Metabolism in Yeasts. In: Rose AH, Harrison JS (eds) The Yeast, Academic, New York

    Google Scholar 

  7. Hess B, Change B (1959) Naturwissenschaften 46: 238–257

    Google Scholar 

  8. Hess B, Boiteux A (1971) Annu Rev Biochem 40: 237–258

    Article  PubMed  CAS  Google Scholar 

  9. Holzer H, Freytag-Hilf R (1959) Hoppe-Seyler’s Z Physiol Chem 316: 7–30

    Article  PubMed  CAS  Google Scholar 

  10. Hess B, Chance B (1961) J Biol Chem 236: 239–246

    PubMed  CAS  Google Scholar 

  11. Boiteux B, Hess B (1981) Phil Trans R Soc Lond 293: 5–22

    Article  CAS  Google Scholar 

  12. Hers H-G, van Schaftingen E (1982) Biochem J 206: 1–12

    PubMed  CAS  Google Scholar 

  13. Evans PR, Farrants GW, Hudson PJ (1981) Phil Trans R Soc Lond 293: 53–62

    Article  CAS  Google Scholar 

  14. Hess B, Boiteux A, Busse HG, Gerisch G (1975) Spatiotemporal Organization in Chemical and Cellular Systems. In: Nicolis G, Lefever R (eds) Advances in Chemical Physics. John Wiley 29: 137–168

    Chapter  Google Scholar 

  15. Boiteux A, Hess B, unpublished experiments

    Google Scholar 

  16. Boiteux A, Hess B, Sel’kov EE (1980) Curr Top Cell Regul 17: 171–203

    PubMed  CAS  Google Scholar 

  17. Hess B (1983) Hoppe-Seyler’s Z Physiol Chem 364: 1–20

    Article  PubMed  CAS  Google Scholar 

  18. Aiuchi T, Daimatsu T, Nakaya K, Nakamura Y (1982) Biochim Biophys Act 685: 289–296

    Article  CAS  Google Scholar 

  19. Kuschmitz D, Hess B, unpublished experiments

    Google Scholar 

  20. Goffeau A, Slayman CW (1981) Biochim Biophys Act 639: 197–223

    CAS  Google Scholar 

  21. Hess B (1963) In: Karlson P (ed) Funktionelle und morphologische Organisation der Zelle. Springer, Berlin Göttingen Heidelberg

    Google Scholar 

  22. Bücher Th, Rüssmann W (1964) Angew Chem internat Edit 3: 426–439

    Article  Google Scholar 

  23. Plesser Th, Markus M (1982) Hoppe-Seyler’s Z Physiol Chem 363: 546

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hess, B., Boiteux, A., Kuschmitz, D. (1983). Regulation of Glycolysis. In: Sund, H., Ullrich, V. (eds) Biological Oxidations. Colloquium der Gesellschaft für Biologische Chemie 14.–16. April 1983 in Mosbach/Baden, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69467-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69467-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69469-1

  • Online ISBN: 978-3-642-69467-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics