Skip to main content

Advertisement

Log in

Tumor suppressor gene adenomatous polyposis coli downregulates intestinal transport

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Loss of function mutations of the tumor suppressor gene adenomatous polyposis coli (APC) underly the familial adenomatous polyposis. Mice carrying an inactivating mutation in the apc gene (apc Min/+) similarly develop intestinal polyposis. APC is effective at least in part by degrading β-catenin and lack of APC leads to markedly enhanced cellular β-catenin levels. β-Catenin has most recently been shown to upregulate the Na+/K+ ATPase. The present study, thus, explored the possibility that APC could influence intestinal transport. The abundance and localization of β-catenin were determined utilizing Western blotting and confocal microscopy, the activity of the electrogenic glucose carrier (SGLT1) was estimated from the glucose-induced current in jejunal segments utilizing Ussing chamber experiments and the Na+/H+ exchanger (NHE3) activity from Na+-dependent re-alkalinization of cytosolic pH (ΔpHi) following an ammonium pulse employing BCECF fluorescence. As a result, β-catenin abundance in intestinal tissue was significantly higher in apc Min/+ mice than in wild-type mice (apc +/+). The β-catenin protein was localized in the basolateral membrane. Both, the glucose-induced current and ΔpHi were significantly higher in apc Min/+ mice than in apc +/+ mice. In conclusion, intestinal electrogenic transport of glucose and intestinal Na+/H+ exchanger activity are both significantly enhanced in apc Min/+ mice, pointing to a role of APC in the regulation of epithelial transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alesutan IS, Ureche ON, Laufer J et al (2010) Regulation of the glutamate transporter EAAT4 by PIKfyve. Cell Physiol Biochem 25:187–194

    Article  PubMed  CAS  Google Scholar 

  2. Alexander RT, Grinstein S (2009) Tethering, recycling and activation of the epithelial sodium-proton exchanger, NHE3. J Exp Biol 212:1630–1637

    Article  PubMed  CAS  Google Scholar 

  3. Bohmer C, Sopjani M, Klaus F et al (2010) The serum and glucocorticoid inducible kinases SGK1-3 stimulate the neutral amino acid transporter SLC6A19. Cell Physiol Biochem 25:723–732

    Article  PubMed  Google Scholar 

  4. Boiteux A, Hess B (1981) Design of glycolysis. Philos Trans R Soc Lond B Biol Sci 293:5–22

    Article  PubMed  CAS  Google Scholar 

  5. Bystriansky JS, Kaplan JH (2007) Sodium pump localization in epithelia. J Bioenerg Biomembr 39:373–378

    Article  PubMed  CAS  Google Scholar 

  6. Cain S, Martinez G, Kokkinos MI et al (2008) Differential requirement for beta-catenin in epithelial and fiber cells during lens development. Dev Biol 321:420–433

    Article  PubMed  CAS  Google Scholar 

  7. Cardone RA, Casavola V, Reshkin SJ (2005) The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer 5:786–795

    Article  PubMed  CAS  Google Scholar 

  8. Casneuf VF, Fonteyne P, Van Damme N et al (2008) Expression of SGLT1, Bcl-2 and p53 in primary pancreatic cancer related to survival. Cancer Invest 26:852–859

    Article  PubMed  CAS  Google Scholar 

  9. Chintala S, Li W, Lamoreux ML et al (2005) Slc7a11 gene controls production of pheomelanin pigment and proliferation of cultured cells. Proc Natl Acad Sci U S A 102:10964–10969

    Article  PubMed  CAS  Google Scholar 

  10. Dehner M, Hadjihannas M, Weiske J et al (2008) Wnt signaling inhibits Forkhead box O3a-induced transcription and apoptosis through up-regulation of serum- and glucocorticoid-inducible kinase 1. J Biol Chem 283:19201–19210

    Article  PubMed  CAS  Google Scholar 

  11. Diakov A, Nesterov V, Mokrushina M et al (2010) Protein kinase B alpha (PKBα) stimulates the epithelial sodium channel (ENaC) heterologously expressed in Xenopus laevis oocytes by two distinct mechanisms. Cell Physiol Biochem 26:913–924

    Article  PubMed  CAS  Google Scholar 

  12. Dieter M, Palmada M, Rajamanickam J et al (2004) Regulation of glucose transporter SGLT1 by ubiquitin ligase Nedd4-2 and kinases SGK1, SGK3, and PKB. Obes Res 12:862–870

    Article  PubMed  CAS  Google Scholar 

  13. Engelman JA, Cantley LC (2008) A sweet new role for EGFR in cancer. Cancer Cell 13:375–376

    Article  PubMed  CAS  Google Scholar 

  14. Fuchs BC, Bode BP (2005) Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Cancer Biol 15:254–266

    Article  PubMed  CAS  Google Scholar 

  15. Fuchs BC, Perez JC, Suetterlin JE et al (2004) Inducible antisense RNA targeting amino acid transporter ATB0/ASCT2 elicits apoptosis in human hepatoma cells. Am J Physiol Gastrointest Liver Physiol 286:G467–G478

    Article  PubMed  CAS  Google Scholar 

  16. Fuster DG, Bobulescu IA, Zhang J et al (2007) Characterization of the regulation of renal Na+/H+ exchanger NHE3 by insulin. Am J Physiol Renal Physiol 292:F577–F585

    Article  PubMed  CAS  Google Scholar 

  17. Ganapathy V, Thangaraju M, Prasad PD (2009) Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Ther 121:29–40

    Article  PubMed  CAS  Google Scholar 

  18. Gehring EM, Zurn A, Klaus F et al (2009) Regulation of the glutamate transporter EAAT2 by PIKfyve. Cell Physiol Biochem 24:361–368

    Article  PubMed  CAS  Google Scholar 

  19. Giles RH, van Es JH, Clevers H (2003) Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 1653:1–24

    PubMed  CAS  Google Scholar 

  20. Gogvadze V, Zhivotovsky B, Orrenius S (2010) The Warburg effect and mitochondrial stability in cancer cells. Mol Aspects Med 31:60–74

    Article  PubMed  CAS  Google Scholar 

  21. Grahammer F, Artunc F, Sandulache D et al (2006) Renal function of gene-targeted mice lacking both SGK1 and SGK3. Am J Physiol Regul Integr Comp Physiol 290:R945–R950

    Article  PubMed  CAS  Google Scholar 

  22. Grahammer F, Henke G, Sandu C et al (2006) Intestinal function of gene-targeted mice lacking serum- and glucocorticoid-inducible kinase 1. Am J Physiol Gastrointest Liver Physiol 290:G1114–G1123

    Article  PubMed  CAS  Google Scholar 

  23. Gupta N, Miyauchi S, Martindale RG et al (2005) Upregulation of the amino acid transporter ATB0,+ (SLC6A14) in colorectal cancer and metastasis in humans. Biochim Biophys Acta 1741:215–223

    PubMed  CAS  Google Scholar 

  24. Gupta N, Prasad PD, Ghamande S et al (2006) Up-regulation of the amino acid transporter ATB(0,+) (SLC6A14) in carcinoma of the cervix. Gynecol Oncol 100:8–13

    Article  PubMed  CAS  Google Scholar 

  25. Harguindey S, Orive G, Luis PJ et al (2005) The role of pH dynamics and the Na+/H+ antiporter in the etiopathogenesis and treatment of cancer. Two faces of the same coin—one single nature. Biochim Biophys Acta 1756:1–24

    PubMed  CAS  Google Scholar 

  26. He TC, Sparks AB, Rago C et al (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512

    Article  PubMed  CAS  Google Scholar 

  27. Huang Y, Dai Z, Barbacioru C et al (2005) Cystine-glutamate transporter SLC7A11 in cancer chemosensitivity and chemoresistance. Cancer Res 65:7446–7454

    Article  PubMed  CAS  Google Scholar 

  28. Ishikawa N, Oguri T, Isobe T et al (2001) SGLT gene expression in primary lung cancers and their metastatic lesions. Jpn J Cancer Res 92:874–879

    PubMed  CAS  Google Scholar 

  29. Jeanes A, Gottardi CJ, Yap AS (2008) Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 27:6920–6929

    Article  PubMed  CAS  Google Scholar 

  30. Kellenberger LD, Bruin JE, Greenaway J et al (2010) The role of dysregulated glucose metabolism in epithelial ovarian cancer. J Oncol 2010:514310

    PubMed  CAS  Google Scholar 

  31. Kidd M, Modlin IM, Gustafsson BI et al (2008) Luminal regulation of normal and neoplastic human EC cell serotonin release is mediated by bile salts, amines, tastants, and olfactants. Am J Physiol Gastrointest Liver Physiol 295:G260–G272

    Article  PubMed  CAS  Google Scholar 

  32. Kim CH, Park KJ, Park JR et al (2006) The RNA interference of amino acid transporter LAT1 inhibits the growth of KB human oral cancer cells. Anticancer Res 26:2943–2948

    PubMed  CAS  Google Scholar 

  33. Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170

    Article  PubMed  CAS  Google Scholar 

  34. Koehl GE, Spitzner M, Ousingsawat J et al (2010) Rapamycin inhibits oncogenic intestinal ion channels and neoplasia in APC(Min/+) mice. Oncogene 29:1553–1560

    Article  PubMed  CAS  Google Scholar 

  35. Krueger B, Haerteis S, Yang L et al (2009) Cholesterol depletion of the plasma membrane prevents activation of the epithelial sodium channel (ENaC) by SGK1. Cell Physiol Biochem 24:605–618

    Article  PubMed  CAS  Google Scholar 

  36. Lang F, Bohmer C, Palmada M et al (2006) (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiol Rev 86:1151–1178

    Article  PubMed  CAS  Google Scholar 

  37. Lang F, Artunc F, Vallon V (2009) The physiological impact of the serum and glucocorticoid-inducible kinase SGK1. Curr Opin Nephrol Hypertens 18:439–448

    Article  PubMed  CAS  Google Scholar 

  38. Laufer J, Boehmer C, Jeyaraj S et al (2009) The C-terminal PDZ-binding motif in the Kv1.5 potassium channel governs its modulation by the Na+/H+ exchanger regulatory factor 2. Cell Physiol Biochem 23:25–36

    Article  PubMed  CAS  Google Scholar 

  39. Lupescu A, Geiger C, Zahir N et al (2009) Inhibition of Na+/H+ exchanger activity by parvovirus B19 protein NS1. Cell Physiol Biochem 23:211–220

    Article  PubMed  CAS  Google Scholar 

  40. Macheda ML, Rogers S, Best JD (2005) Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 202:654–662

    Article  PubMed  CAS  Google Scholar 

  41. Matosin-Matekalo M, Mesonero JE, Delezay O et al (1998) Thyroid hormone regulation of the Na+/glucose cotransporter SGLT1 in Caco-2 cells. Biochem J 334(Pt 3):633–640

    PubMed  CAS  Google Scholar 

  42. Menniti M, Iuliano R, Foller M et al (2010) 60 kDa lysophospholipase, a new Sgk1 molecular partner involved in the regulation of ENaC. Cell Physiol Biochem 26:587–596

    Article  PubMed  CAS  Google Scholar 

  43. Moser AR, Pitot HC, Dove WF (1990) A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247:322–324

    Article  PubMed  CAS  Google Scholar 

  44. Muza-Moons MM, Koutsouris A, Hecht G (2003) Disruption of cell polarity by enteropathogenic Escherichia coli enables basolateral membrane proteins to migrate apically and to potentiate physiological consequences. Infect Immun 71:7069–7078

    Article  PubMed  CAS  Google Scholar 

  45. Naishiro Y, Yamada T, Idogawa M et al (2005) Morphological and transcriptional responses of untransformed intestinal epithelial cells to an oncogenic beta-catenin protein. Oncogene 24:3141–3153

    Article  PubMed  CAS  Google Scholar 

  46. Nawashiro H, Otani N, Shinomiya N et al (2006) L-type amino acid transporter 1 as a potential molecular target in human astrocytic tumors. Int J Cancer 119:484–492

    Article  PubMed  CAS  Google Scholar 

  47. Orlowski J, Grinstein S (2004) Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch 447:549–565

    Article  PubMed  CAS  Google Scholar 

  48. Ousingsawat J, Spitzner M, Schreiber R et al (2008) Upregulation of colonic ion channels in APC (Min/+) mice. Pflugers Arch 456:847–855

    Article  PubMed  CAS  Google Scholar 

  49. Pedersen SF (2006) The Na+/H+ exchanger NHE1 in stress-induced signal transduction: implications for cell proliferation and cell death. Pflugers Arch 452:249–259

    Article  PubMed  CAS  Google Scholar 

  50. Polakis P (2000) Wnt signaling and cancer. Genes Dev 14:1837–1851

    PubMed  CAS  Google Scholar 

  51. Putney LK, Denker SP, Barber DL (2002) The changing face of the Na+/H+ exchanger, NHE1: structure, regulation, and cellular actions. Annu Rev Pharmacol Toxicol 42:527–552

    Article  PubMed  CAS  Google Scholar 

  52. Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61:296–434

    PubMed  CAS  Google Scholar 

  53. Rotte A, Bhandaru M, Foller M et al (2009) APC sensitive gastric acid secretion. Cell Physiol Biochem 23:133–142

    Article  PubMed  CAS  Google Scholar 

  54. Sattler UG, Mueller-Klieser W (2009) The anti-oxidant capacity of tumour glycolysis. Int J Radiat Biol 85:963–971

    Article  PubMed  CAS  Google Scholar 

  55. Shojaiefard M, Strutz-Seebohm N, Tavare JM et al (2007) Regulation of the Na(+), glucose cotransporter by PIKfyve and the serum and glucocorticoid inducible kinase SGK1. Biochem Biophys Res Commun 359:843–847

    Article  PubMed  CAS  Google Scholar 

  56. Sopjani M, Alesutan I, Wilmes J et al (2010) Stimulation of Na+/K+ ATPase activity and N+ coupled glucose transport by β-catenin. BBRC 402:467–470

    PubMed  CAS  Google Scholar 

  57. Stock C, Schwab A (2009) Protons make tumor cells move like clockwork. Pflugers Arch 458:981–992

    Article  PubMed  CAS  Google Scholar 

  58. Tetsu O, McCormick F (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398:422–426

    Article  PubMed  CAS  Google Scholar 

  59. Thomas JA, Buchsbaum RN, Zimniak A et al (1979) Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry 18:2210–2218

    Article  PubMed  CAS  Google Scholar 

  60. Ullrich S, Zhang Y, Avram D et al (2007) Dexamethasone increases Na+/K+ ATPase activity in insulin secreting cells through SGK1. Biochem Biophys Res Commun 352:662–667

    Article  PubMed  CAS  Google Scholar 

  61. Wang D, Zhang H, Lang F et al (2007) Acute activation of NHE3 by dexamethasone correlates with activation of SGK1 and requires a functional glucocorticoid receptor. Am J Physiol Cell Physiol 292:C396–C404

    Article  PubMed  CAS  Google Scholar 

  62. Wang K, Gu S, Nasir O et al (2010) SGK1-dependent intestinal tumor growth in APC-deficient mice. Cell Physiol Biochem 25:271–278

    Article  PubMed  CAS  Google Scholar 

  63. Weihua Z, Tsan R, Huang WC et al (2008) Survival of cancer cells is maintained by EGFR independent of its kinase activity. Cancer Cell 13:385–393

    Article  PubMed  Google Scholar 

  64. Yoon JH, Kim IJ, Kim H et al (2005) Amino acid transport system L is differently expressed in human normal oral keratinocytes and human oral cancer cells. Cancer Lett 222:237–245

    Article  PubMed  CAS  Google Scholar 

  65. Yun CC, Chen Y, Lang F (2002) Glucocorticoid activation of Na(+)/H(+) exchanger isoform 3 revisited. The roles of SGK1 and NHERF2. J Biol Chem 277:7676–7683

    Article  PubMed  CAS  Google Scholar 

  66. Zachos NC, Tse M, Donowitz M (2005) Molecular physiology of intestinal Na+/H+ exchange. Annu Rev Physiol 67:411–443

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from DFG and BMBF (F.L.). The authors gratefully acknowledge the expert technical assistance by Elfriede Faber and the meticulous preparation of the manuscript by Lejla Subasic and Sari Ruebe.

Disclosure statement

The authors have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Lang.

Additional information

Rexhep Rexhepaj and Anand Rotte shared first authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rexhepaj, R., Rotte, A., Gu, S. et al. Tumor suppressor gene adenomatous polyposis coli downregulates intestinal transport. Pflugers Arch - Eur J Physiol 461, 527–536 (2011). https://doi.org/10.1007/s00424-011-0945-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-0945-2

Keywords

Navigation