Skip to main content

Zinc Efflux in Trichomonas vaginalis: In Silico Identification and Expression Analysis of CDF-Like Genes

  • Chapter
  • First Online:

Abstract

Zinc (Zn) is a common essential component for all organisms because this metal serves as a cofactor or structural element for enzymes and metalloproteins involved in several important biological processes. However, excess levels of Zn can be toxic, as a consequence, the cells have evolved homeostatic mechanisms to regulate intracellular levels of this trace mineral. Zinc efflux and sequestration into internal cellular compartments from cells are mediated, in large part, by the ZNT/SLC30 proteins, which belong to the CDF family of ion transporters. The CDF family has evolved in prokaryotes and has been reported in several organisms, such as fungi, plants, and animals. Zn has been shown to regulate expression of proteins involved in metabolism and pathogenicity mechanisms in the protozoan pathogen Trichomonas vaginalis, in contrast high concentrations of this element were also found to be toxic for T. vaginalis trophozoites. Until now, Zn homeostasis mechanisms are not yet clear in this parasite. We performed a genome-wide analysis and localized eight members of the CDF gene family in T. vaginalis (TvCDF1-8). With the use of in silico analyses, the TvCDF protein sequences revealed high conservation and show similar properties to the reported in other CDF orthologs. We analyzed the expression patterns of TvCDF1-8 transcripts in trophozoites growth under high zinc concentrations, which showed down-regulation in expression. These results indicate that TvCDF genes encode membrane transporters and strongly supported their identity as members of CDF-like gene family, and further suggest the function in Zn efflux and sequestration in T. vaginalis.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Maret W (2013) Zinc and the zinc proteome. In: Banci L (ed) Metallomics and the cell. Springer, Dordrecht, pp 479–501

    Chapter  Google Scholar 

  2. Prashanth L, Kattapagari KK, Chitturi RT, Baddam VRR, Prasad LK (2015) A review on role of essential trace elements in health and disease. J NTR Univ Health Sci 4(2):75

    Article  Google Scholar 

  3. Blindauer CA (2015) Advances in the molecular understanding of biological zinc transport. Chem Commun 51(22):4544–4563

    Article  CAS  Google Scholar 

  4. Wang D, Fierke CA (2013) The BaeSR regulon is involved in defense against zinc toxicity in E. coli. Metallomics 5:372–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Abu Kwaik Y, Bumann D (2013) Microbial quest for food in vivo: ‘nutritional virulence’as an emerging paradigm. Cell Microbiol 15(6):882–890

    Article  CAS  PubMed  Google Scholar 

  6. Cerasi M, Ammendola S, Battistoni A (2013) Competition for zinc binding in the host-pathogen interaction. Front Cell Infect Microbiol 3:108

    Article  PubMed  PubMed Central  Google Scholar 

  7. Porcheron G, Garénaux A, Proulx J, Sabri M, Dozois CM (2013) Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. In: Veyrier F, Cellier M (eds) Metal economy in host-microbe interactions. Frontiers Media SA, Lausanne, pp 172–195

    Google Scholar 

  8. Nies DH (2007) How cells control zinc homeostasis. Science 317:1695–1696

    Article  CAS  PubMed  Google Scholar 

  9. Kambe T, Yamaguchi-Iwai Y, Sasaki R, Nagao M (2004) Overview of mammalian zinc transporters. Cell Mol Life Sci 61:49–68

    Article  CAS  PubMed  Google Scholar 

  10. Nadadur SS, Srirama K, Mudipalli A (2008) Iron transport and homeostasis mechanisms: their role in health and disease. Indian J Med Res 128:533–544

    CAS  PubMed  Google Scholar 

  11. Dean P, Major P, Nakjang S, Hirt RP, Embley TM (2014) Transport proteins of parasitic protists and their role in nutrient salvage. Front Plant Sci 5:153

    Article  PubMed  PubMed Central  Google Scholar 

  12. North M, Steffen J, Loguinov AV, Zimmerman GR, Vulpe CD, Eide DJ (2012) Genome-wide functional profiling identifies genes and processes important for zinc-limited growth of Saccharomyces cerevisiae. PLoS Genet 8(6):e1002699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14:186–199. https://doi.org/10.1007/BF01569902

    Article  CAS  PubMed  Google Scholar 

  14. Kolaj-Robin O, Russell D, Hayes KA, Pembroke JT, Soulimane T (2015) Cation diffusion facilitator family: structure and function. FEBS Lett 589(12):1283–1295

    Article  CAS  PubMed  Google Scholar 

  15. Montanini B, Blaudez D, Jeandroz S, Sanders D, Chalot M (2007) Phylogenetic and functional analysis of the cation diffusion facilitator (CDF) family: improved signature and prediction of substrate specificity. BMC Genomics 8(1):107

    Article  PubMed  PubMed Central  Google Scholar 

  16. Palmiter RD, Huang L (2004) Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers. Pflugers Arch 447(5):744–751

    Article  CAS  PubMed  Google Scholar 

  17. Kambe T, Tsuji T, Hashimoto A, Itsumura N (2015) The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev 95(3):749–784

    Article  CAS  PubMed  Google Scholar 

  18. Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27(2-3):313–339

    Article  CAS  PubMed  Google Scholar 

  19. Cubillas C, Vinuesa P, Tabche ML, García-de los Santos A (2013) Phylogenomic analysis of cation diffusion facilitator proteins uncovers Ni2+/Co2+ transporters. Metallomics 5(12):1634–1643

    Article  CAS  PubMed  Google Scholar 

  20. Cragg RA, Christie GR, Phillips SR, Russi RM, Küry S, Mathers JC et al (2002) A novel zinc-regulated human zinc transporter, hZTL1, is localized to the enterocyte apical membrane. J Biol Chem 277(25):22789–22797

    Article  CAS  PubMed  Google Scholar 

  21. Kambe T, Narita H, Yamaguchi-Iwai Y, Hirose J, Amano T, Sugiura N et al (2002) Cloning and characterization of a novel mammalian zinc transporter, zinc transporter 5, abundantly expressed in pancreatic β cells. J Biol Chem 277(21):19049–19055

    Article  CAS  PubMed  Google Scholar 

  22. Li L, Kaplan J (2001) The yeast gene MSC2, a member of the cation diffusion facilitator family, affects the cellular distribution of zinc. J Biol Chem 276(7):5036–5043

    Article  CAS  PubMed  Google Scholar 

  23. Gaither LA, Eide DJ (2001) Eukaryotic zinc transporters and their regulation. In: Zinc biochemistry, physiology, and homeostasis. Springer, Dordrecht, pp 65–84

    Chapter  Google Scholar 

  24. Gustin JL, Zanis MJ, Salt DE (2011) Structure and evolution of the plant cation diffusion facilitator family of ion transporters. BMC Evol Biol 11(1):76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hoch E, Lin W, Chai J, Hershfinkel M, Fu D, Sekler I (2012) Histidine pairing at the metal transport site of mammalian ZnT transporters controls Zn2+ over Cd2+ selectivity. Proc Natl Acad Sci 109(19):7202–7207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee SM, Grass G, Haney CJ, Fan B, Rosen BP, Anton A et al (2002) Functional analysis of the Escherichia coli zinc transporter ZitB. FEMS Microbiol Lett 215(2):273–278

    Article  CAS  PubMed  Google Scholar 

  27. Menezes CB, Frasson AP, Tasca T (2016) Trichomoniasis-are we giving the deserved attention to the most common non-viral sexually transmitted disease worldwide? Microb Cell 3(9):404

    Article  PubMed  PubMed Central  Google Scholar 

  28. Crouch ML, Benchimol M, Alderete JF (2001) Binding of fibronectin by Trichomonas vaginalis is influenced by iron and calcium. Microb Pathog 31(3):131–144

    Article  CAS  PubMed  Google Scholar 

  29. Figueroa-Angulo EE, Rendón-Gandarilla FJ, Puente-Rivera J, Calla-Choque JS, Cárdenas-Guerra RE, Ortega-López J et al (2012) The effects of environmental factors on the virulence of Trichomonas vaginalis. Microbes Infect 14:1411–1427

    Article  CAS  PubMed  Google Scholar 

  30. Torres-Romero JC, Arroyo R (2009) Responsiveness of Trichomonas vaginalis to iron concentrations: evidence for a post-transcriptional iron regulation by an IRE/IRP-like system. Infect Genet Evol 9:1065–1074

    Article  CAS  PubMed  Google Scholar 

  31. Krieger JN, Rein MF (1982) Zinc sensitivity of Trichomonas vaginalis: in vitro studies and clinical implications. J Infect Dis 146(3):341–345

    Article  CAS  PubMed  Google Scholar 

  32. Vazquez Carrillo LI, Quintas Granados LI, Arroyo R, Mendoza Hernández G, González Robles A, Carvajal Gamez BI, Alvarez Sánchez ME (2011) The effect of Zn2+ on prostatic cell cytotoxicity caused by Trichomonas vaginalis. J Integr OMICS 1(2):198–210

    Google Scholar 

  33. Garcia AF, Chang TH, Benchimol M, Klumpp DJ, Lehker MW, Alderete JF (2003) Iron and contact with host cells induce expression of adhesins on surface of Trichomonas vaginalis. Mol Microbiol 47(5):1207–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moreno-Brito V, Yanez-Gomez C, Meza-Cervantez P, Avila-Gonzalez L, Rodriguez MA, Ortega-Lopez J, Gonzalez-Robles A, Arroyo R (2005) A trichomonas vaginalis 120 kDa protein with identity to hydrogenosome pyruvate:ferredoxin oxidoreductase is a surface adhesin induced by iron. Cell Microbiol 7:245–258

    Article  CAS  PubMed  Google Scholar 

  35. Hernández-Gutiérrez R, Avila-González L, Ortega-López J, Cruz-Talonia F, Gómez-Gutierrez G, Arroyo R (2004) Trichomonas vaginalis: characterization of a 39-kDa cysteine proteinase found in patient vaginal secretions. Exp Parasitol 107(3):125–135

    Article  PubMed  Google Scholar 

  36. Ma L, Meng Q, Cheng W, Sung Y, Tang P, Hu S, Yu J (2011) Involvement of the GP63 protease in infection of Trichomonas vaginalis. Parasitol Res 109(1):71–79

    Article  PubMed  Google Scholar 

  37. Quan JH, Kang BH, Cha GH, Zhou W, Koh YB, Yang JB et al (2014) Trichonomas vaginalis metalloproteinase induces apoptosis of SiHa cells through disrupting the Mcl-1/Bim and Bcl-xL/Bim complexes. PLoS One 9(10):e110659

    Article  PubMed  PubMed Central  Google Scholar 

  38. Quintas-Granados L, Villalpando J, Vázquez-Carrillo L, Arroyo R, Mendoza-Hernández G, Alvarez-Sánchez ME (2013) TvMP50 is an immunogenic metalloproteinase during male trichomoniasis. Mol Cell Proteomics 12:1953–1964

    Article  PubMed  PubMed Central  Google Scholar 

  39. Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q et al (2007) Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315(5809):207–212

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dyall SD, Lester DC, Schneider RE, Delgadillo-Correa MG, Plümper E, Martinez A et al (2003) Trichomonas vaginalis Hmp35, a putative pore-forming hydrogenosomal membrane protein, can form a complex in yeast mitochondria. J Biol Chem 278(33):30548–30561

    Article  CAS  PubMed  Google Scholar 

  41. Fernández-Martín KG, Alvarez-Sánchez ME, Arana-Argáez VE, Alvarez-Sánchez LC, Lara-Riegos JC, Torres-Romero JC (2017) Genome-wide identification, in silico characterization and expression analysis of ZIP-like genes from Trichomonas vaginalis in response to zinc and iron. Biometals 30(5):663–675. https://doi.org/10.1007/s10534-017-0034-x

    Article  PubMed  Google Scholar 

  42. Conrad MD, Bradic M, Warring SD, Gorman AW, Carlton JM (2013) Getting trichy: tools and approaches to interrogating Trichomonas vaginalis in a post-genome world. Trends Parasitol 29(1):17–25

    Article  PubMed  Google Scholar 

  43. Singh S, Singh G, Singh AK, Gautam G, Farmer R, Lodhi SS, Wadhwa G (2011) Prediction and analysis of paralogous proteins in Trichomonas vaginalis genome. Bioinformation 6:31–34

    Article  PubMed  PubMed Central  Google Scholar 

  44. Leong IU, Stuckey A, Lai D, Skinner JR, Love DR (2015) Assessment of the predictive accuracy of five in silico prediction tools, alone or in combination, and two metaservers to classify long QT syndrome gene mutations. BMC Med Genet 16:34

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95(11):5857–5864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Krogh A, Larsson B, Heijne G, Sonnhammer E (2001) Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J Mol Biol 305(3):567–580

    Article  CAS  PubMed  Google Scholar 

  47. Buchan DWA, Minneci F, Nugent TCO, Bryson K, Jones DT (2013) Scalable web services for the PSIPRED protein analysis workbench. Nucleic Acids Res 41:W340–W348

    Article  Google Scholar 

  48. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME suite: tools for motif discovery and searching. Nucleic Acids Res 37(Web Server issue):W202–W208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins R, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, NJ, pp 571–607

    Chapter  Google Scholar 

  50. Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins 64:643–651

    Article  CAS  PubMed  Google Scholar 

  51. Rogers EE, Eide DJ, Guerinot ML (2000) Altered selectivity in an Arabidopsis metal transporter. Proc Natl Acad Sci U S A 97:12356–12360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang L, Tepaamorndech S (2013) The SLC30 family of zinc transporters - a review of current understanding of their biological and pathophysiological roles. Mol Asp Med 34(2-3):548–560

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was undertaken as part of a research project supported by grant 237990 (to J. C. Torres-Romero) from Consejo Nacional de Ciencia y Tecnología (CONACYT), México. K. G. Fernández-Martín is a scholarship recipient from CONACYT.

Conflict of Interest: The authors declare that they have no conflict of interest regarding the publication of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Torres-Romero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Torres-Romero, J.C. et al. (2018). Zinc Efflux in Trichomonas vaginalis: In Silico Identification and Expression Analysis of CDF-Like Genes. In: Olivares-Quiroz, L., Resendis-Antonio, O. (eds) Quantitative Models for Microscopic to Macroscopic Biological Macromolecules and Tissues. Springer, Cham. https://doi.org/10.1007/978-3-319-73975-5_8

Download citation

Publish with us

Policies and ethics