Skip to main content
Log in

Genome-wide identification, in silico characterization and expression analysis of ZIP-like genes from Trichomonas vaginalis in response to Zinc and Iron

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Trace elements such as Zinc and Iron are essential components of metalloproteins and serve as cofactors or structural elements for enzymes involved in several important biological processes in almost all organisms. Because either excess or insufficient levels of Zn and Fe can be harmful for the cells, the homeostatic levels of these trace minerals must be tightly regulated. The Zinc regulated transporter, Iron regulated transporter-like Proteins (ZIP) comprise a diverse family, with several paralogues in diverse organisms and are considered essential for the Zn and Fe uptake and homeostasis. Zn and Fe has been shown to regulate expression of proteins involved in metabolism and pathogenicity mechanisms in the protozoan pathogen Trichomonas vaginalis, in contrast high concentrations of these elements were also found to be toxic for T. vaginalis trophozoites. Nevertheless, Zn and Fe uptake and homeostasis mechanisms is not yet clear in this parasite. We performed a genome-wide analysis and localized the 8 members of the ZIP gene family in T. vaginalis (TvZIP1-8). The bioinformatic programs predicted that the TvZIP proteins are highly conserved and show similar properties to the reported in other ZIP orthologues. The expression patterns of TvZIP1, 3, 5 and 7 were diminished in presence of Zinc, while the rest of the TvZIP genes showed an unchanged profile in this condition. In addition, TvZIP2 and TvZIP4 showed a differential expression pattern in trophozoites growth under different Iron conditions. These results suggest that TvZIP genes encode membrane transporters that may be responsible for the Zn and Fe acquisition in T. vaginalis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvarez-Sánchez ME, Solano-González E, Yañez-Gómez C, Arroyo R (2007) Negative iron regulation of the CP65 cysteine proteinase cytotoxicity in Trichomonas vaginalis. Microbes Infect 9:1597–1605

    Article  PubMed  Google Scholar 

  • Antala S, Ovchinnikov S, Kamisetty H, Baker D, Dempski RE (2015) Computation and functional studies provide a model for the structure of the Zinc transporter hZIP4. J Biol Chem 290:17796–17805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arroyo R, Cárdenas-Guerra RE, Figueroa-Angulo EE, Puente-Rivera J, Zamudio-Prieto O, Ortega-López J (2015) Trichomonas vaginalis cysteine proteinases: Iron response in gene expression and proteolytic activity. BioMed Res Int. doi:10.1155/2015/946787

    Google Scholar 

  • Bafaro EM, Antala S, Nguyen TV, Dzul SP, Doyon B, Stemmler TL, Dempski RE (2015) The large intracellular loop of hZIP4 is an intrinsically disordered zinc binding domain. Metallomics 7:1319–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchan DWA, Minneci F, Nugent TCO, Bryson K, Jones DT (2013) Scalable web services for the PSIPRED protein analysis workbench. Nucl Acids Res 41:W340–W348

    Article  Google Scholar 

  • Carvalho S, da Silva RB, Shawki A, Castro H, Lamy M, Eide D et al (2015) LiZIP3 is a cellular zinc transporter that mediates the tightly regulated import of zinc in Leishmania infantum parasites. Mol Microbiol 96:581–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Schneider RO, Diehl C, Dos Santos FM, Piffer AC, Garcia AWA, Kulmann MIR et al (2015) Effects of zinc transporters on Cryptococcus gattii virulence. Sci Rep 5:10104

    Article  CAS  PubMed Central  Google Scholar 

  • Dempski RE (2012) The cation selectivity of the ZIP transporters. Curr Top Membr 69:221–245

    Article  CAS  PubMed  Google Scholar 

  • Dyall SD, Lester DC, Schneider RE, Delgadillo-Correa MG, Plümper E, Martinez A et al (2003) Trichomonas vaginalis Hmp35, a putative pore-forming hydrogenosomal membrane protein, can form a complex in yeast mitochondria. J Biol Chem 278:30548–30561

    Article  CAS  PubMed  Google Scholar 

  • Eide DJ (2006) Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta 1763:711–722

    Article  CAS  PubMed  Google Scholar 

  • Figueroa-Angulo EE, Rendón-Gandarilla FJ, Puente-Rivera J, Calla-Choque JS, Cárdenas-Guerra RE, Ortega-López J et al (2012) The effects of environmental factors on the virulence of Trichomonas vaginalis. Microbes Infect 14:1411–1427

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins R, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, New York, pp 571–607

    Chapter  Google Scholar 

  • Grass G, Wong MD, Rosen BP, Smith RL, Rensing C (2002) ZupT is a Zn (II) uptake system in Escherichia coli. J Bacteriol 184:864–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta Biomembr 1465:190–198

    Article  CAS  Google Scholar 

  • Huynh C, Sacks DL, Andrews NW (2006) A Leishmania amazonensis ZIP family iron transporter is essential for parasite replication within macrophage phagolysosomes. J Exp Med 203:2363–2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jesus JBD, Pinheiroa S, Lopes AH, Meyer-Fernandesa JR (2002) An ectonucleotide ATP-diphosphohydrolase activity in Trichomonas vaginalis stimulated by galactose and its possible role in virulence. Z Naturforsch C 57:890–896

    Article  PubMed  Google Scholar 

  • Kambe T, Yamaguchi-Iwai Y, Sasaki R, Nagao M (2004) Overview of mammalian zinc transporters. Cell Mol Life Sci 61:49–68

    Article  CAS  PubMed  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  PubMed  Google Scholar 

  • Li S, Zhou X, Huang Y, Zhu L, Zhang S, Zhao Y et al (2013) Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. BMC Plant Biol 13:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma L, Meng Q, Cheng W, Sung Y, Tang P, Hu S, Yu J (2001) Involvement of the GP63 protease in infection of Trichomonas vaginalis. Parasitol Res 109:71–79

    Article  Google Scholar 

  • Maret W (2013) Zinc and the zinc proteome. In: Banci L (ed) Metallomics and the cell. Springer, Netherlands, pp 479–501

    Chapter  Google Scholar 

  • Mondal TK, Ganie SA, Rana MK, Sharma TR (2014) Genome-wide analysis of zinc transporter genes of maize (Zea mays). Plant Mol Biol Rep 32:605–616

    Article  CAS  Google Scholar 

  • Nadadur SS, Srirama K, Mudipalli A (2008) Iron transport and homeostasis mechanisms: their role in health and disease. Indian J Med Res 128:533–544

    CAS  PubMed  Google Scholar 

  • Nielsen FH (2002) Trace mineral deficiencies. In: Berdanier CD (ed) Handbook of Nutrition and Foods. CRC Press, Boca Raton, pp 1463–1487

    Google Scholar 

  • Nies DH (2007) How cells control zinc homeostasis. Science 317:1695–1696

    Article  CAS  PubMed  Google Scholar 

  • Nishida S, Mizuno T, Obata H (2008) Involvement of histidine-rich domain of ZIP family transporter TjZNT1 in metal ion specificity. Plant Physiol Biochem 46:601–606

    Article  CAS  PubMed  Google Scholar 

  • Porcheron G, Garénaux A, Proulx J, Sabri M, Dozois CM (2015) Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. In: Veyrier F, Cellier M (eds) Metal economy in host-microbe interactions. Frontiers Media SA, Lausanne, pp 172–195

    Google Scholar 

  • Quintas-Granados L, Villalpando J, Vázquez-Carrillo L, Arroyo R, Mendoza-Hernández G, Alvarez-Sánchez ME (2013) TvMP50 is an immunogenic metalloproteinase during male trichomoniasis. Mol Cell Proteomics 12:1953–1964

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers EE, Eide DJ, Guerinot ML (2000) Altered selectivity in an Arabidopsis metal transporter. Proc Natl Acad Sci USA 97:12356–12360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu JS, Choi HK, Min DY, Ha SE, Ahn MH (2001) Effect of iron on the virulence of Trichomonas vaginalis. J Parasitol 87:457–460

    Article  CAS  PubMed  Google Scholar 

  • Sahu T, Boisson B, Lacroix C, Bischoff E, Richier Q, Formaglio P et al (2014) ZIPCO, a putative metal ion transporter, is crucial for Plasmodium liver-stage development. EMBO Mol Med 6:1387–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saier MH, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G (2016) The transporter classification database (TCDB): recent advances. Nucl Acids Res 44:D372–D379

    Article  CAS  PubMed  Google Scholar 

  • Schultz J, Copley RR, Doerks T, Ponting CP, Bork P (2000) SMART: a web-based tool for the study of genetically mobile domains. Nucl Acids Res 28:231–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Singh G, Singh AK, Gautam G, Farmer R, Lodhi SS, Wadhwa G (2011) Prediction and analysis of paralogous proteins in Trichomonas vaginalis genome. Bioinformation 6:31–34

    Article  PubMed  PubMed Central  Google Scholar 

  • Torres-Romero JC, Arroyo R (2009) Responsiveness of Trichomonas vaginalis to iron concentrations: evidence for a post-transcriptional iron regulation by an IRE/IRP-like system. Infect Genet Evol 9:1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Tusnády GE, Dobson L, Tompa P (2015) Disordered regions in transmembrane proteins. Biochim Biophys Acta Biomembr 1848:2839–2848

    Article  Google Scholar 

  • Wang J, Pantopoulos K (2011) Regulation of cellular iron metabolism. Biochem J 434:365–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins 64:643–651

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Knutson M (2012) Iron transport ability of the Slc39a (ZIP) family of metal-ion transporters. FASEB J 26(1 Supplement):624–641

    Google Scholar 

Download references

Acknowledgements

This work was undertaken as part of a research project supported by Grant 237990 (to J.C. Torres-Romero) from Consejo Nacional de Ciencia y Tecnología (CONACYT), México. K.G. Fernández-Martín is a scholarship recipient from CONACYT. We thank MI Jazmín Salett Novelo Castilla, from the Laboratorio de Absorción Atómica, Facultad de Química de la Universidad Autónoma de Yucatán, for their help in the FAAS measurements assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Torres-Romero.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Martín, K.G., Alvarez-Sánchez, M.E., Arana-Argáez, V.E. et al. Genome-wide identification, in silico characterization and expression analysis of ZIP-like genes from Trichomonas vaginalis in response to Zinc and Iron. Biometals 30, 663–675 (2017). https://doi.org/10.1007/s10534-017-0034-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-017-0034-x

Keywords

Navigation