Skip to main content

Electrostatics Models for Biology

  • Chapter
  • First Online:
Computational Electrostatics for Biological Applications

Abstract

Continuum electrostatics has been a crossing point between physical chemistry and biology since the early twentieth century. This review discusses briefly the field leading up to the introduction of Finite Difference Poisson–Boltzmann (FDPB) methods, followed by application of FDPB to structure/function relationships, including to enzymes and biomolecular interactions. The ease of application and limited computational requirements of continuum electrostatics models, in comparison with atomistic models and simulations, render them suitable for linking to the high-throughput data acquisition that is common in the postgenomic era. In addition to the large numbers of atomic structures yielded by structural biology and structural genomics, pipelines for structural annotation and comparative modelling open up further opportunities. The effectiveness of such wide-scale modelling relies on the quality of physical and computational models at the heart of a pipeline, and on the availability of biological read-outs with which to compare computed results. In the best cases, it is possible to derive and test new hypotheses for molecular structure/function relationships in biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levitt M, Warshel A (1975) Computer simulation of protein folding. Nature 253(5494):694–698

    Article  CAS  PubMed  Google Scholar 

  2. McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267(5612):585–590

    Article  CAS  PubMed  Google Scholar 

  3. van Gunsteren WF, Karplus M (1981) Effect of constraints, solvent and crystal environment on protein dynamics. Nature 293(5834):677–678

    Article  PubMed  Google Scholar 

  4. Edsall JT, Wyman J (1958) Biophysical chemistry. Academic Press, New York

    Google Scholar 

  5. Tanford C (1961) Physical chemistry of macromolecules. Wiley, New York

    Google Scholar 

  6. Wada A, Nakamura H (1981) Nature of the charge distribution in proteins. Nature 293(5835):757–758

    Article  CAS  PubMed  Google Scholar 

  7. Perutz MF (1978) Electrostatic effects in proteins. Science 201(4362):1187–1191

    Article  CAS  PubMed  Google Scholar 

  8. Kilmartin JV, Arnone A, Fogg J (1977) Specific modification of the alpha chain C-terminal carboxyl group of hemoglobin by trypsin-catalyzed hydrazinolysis. Biochemistry 16(24):5393–5397

    Article  CAS  PubMed  Google Scholar 

  9. Caspar DL (1963) Assembly and stability of the tobacco mosaic virus particle. Adv Protein Chem 18:37–121

    Article  CAS  PubMed  Google Scholar 

  10. Perutz MF, Raidt H (1975) Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2. Nature 255(5505):256–259

    Article  CAS  PubMed  Google Scholar 

  11. Weinstein JN, Blumenthal R, van Renswoude J, Kempf C, Klausner RD (1982) Charge clusters and the orientation of membrane proteins. J Membr Biol 66(3):203–212

    Article  CAS  PubMed  Google Scholar 

  12. von Heijne G (1992) Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol 225(2):487–494

    Article  Google Scholar 

  13. Linderstrom-Lang K (1924) On the ionization of proteins. Cr Trav Lab Carlsberg 15:1–29

    Google Scholar 

  14. Debye P, Huckel E (1923) On the theory of electrolytes. I. Freezing point depression and related phenomena. Physikal Z 24:185–206

    CAS  Google Scholar 

  15. Tanford C, Kirkwood JG (1957) Theory of protein titration curves. 1. General equations for impenettrable spheres. J Am Chem Soc 79(20):5333–5339

    Article  CAS  Google Scholar 

  16. March KL, Maskalick DG, England RD, Friend SH, Gurd FR (1982) Analysis of electrostatic interactions and their relationship to conformation and stability of bovine pancreatic trypsin inhibitor. Biochemistry 21(21):5241–5251

    Article  CAS  PubMed  Google Scholar 

  17. Shire SJ, Hanania GI, Gurd FR (1974) Electrostatic effects in myoglobin. Hydrogen ion equilibria in sperm whale ferrimyoglobin. Biochemistry 13(14):2967–2974

    Article  CAS  PubMed  Google Scholar 

  18. Tanford C, Roxby R (1972) Interpretation of protein titration curves. Application to lysozyme. Biochemistry 11(11):2192–2198

    Article  CAS  PubMed  Google Scholar 

  19. Matthew JB, Richards FM (1982) Anion binding and pH-dependent electrostatic effects in ribonuclease. Biochemistry 21(20):4989–4999

    Article  CAS  PubMed  Google Scholar 

  20. Gouy M (1910) On the constitution of the electric charge at the surface of an electrolyte. J Phys (Paris) 9:457–468

    CAS  Google Scholar 

  21. Chapman DL (1913) A contribution to the theory of electrocapillarity. Phil Mag 25:475–481

    Article  Google Scholar 

  22. Barber J (1980) Membrane surface charges and potentials in relation to photosynthesis. Biochim Biophys Acta 594(4):253–308

    Article  CAS  PubMed  Google Scholar 

  23. Russell ST, Warshel A (1985) Calculations of electrostatic energies in proteins. The energetics of ionized groups in bovine pancreatic trypsin inhibitor. J Mol Biol 185(2):389–404

    Article  CAS  PubMed  Google Scholar 

  24. Kamerlin SC, Vicatos S, Dryga A, Warshel A (2011) Coarse-grained (multiscale) simulations in studies of biophysical and chemical systems. Annu Rev Phys Chem 62:41–64

    Article  CAS  PubMed  Google Scholar 

  25. Schutz CN, Warshel A (2001) What are the dielectric “constants” of proteins and how to validate electrostatic models? Proteins 44(4):400–417

    Article  CAS  PubMed  Google Scholar 

  26. Warshel A, Sharma PK, Kato M, Xiang Y, Liu H, Olsson MH (2006) Electrostatic basis for enzyme catalysis. Chem Rev 106(8):3210–3235

    Article  CAS  PubMed  Google Scholar 

  27. Hol WG, van Duijnen PT, Berendsen HJ (1978) The alpha-helix dipole and the properties of proteins. Nature 273(5662):443–446

    Article  CAS  PubMed  Google Scholar 

  28. Warwicker J, Watson HC (1982) Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. J Mol Biol 157(4):671–679

    Article  CAS  PubMed  Google Scholar 

  29. Wade RC, Luty BA, Demchuk E, Madura JD, Davis ME, Briggs JM, McCammon JA (1994) Simulation of enzyme-substrate encounter with gated active sites. Nat Struct Biol 1(1):65–69

    Article  CAS  PubMed  Google Scholar 

  30. Warwicker J (1983) A study of protein electrostatics. University of Bristol, Bristol

    Google Scholar 

  31. Warwicker J (1986) Continuum dielectric modelling of the protein-solvent system, and calculation of the long-range electrostatic field of the enzyme phosphoglycerate mutase. J Theor Biol 121(2):199–210

    Article  CAS  PubMed  Google Scholar 

  32. Boiteux A, Hess B (1981) Design of glycolysis. Philos Trans R Soc Lond 293(1063):5–22

    Article  CAS  Google Scholar 

  33. Stein M, Gabdoulline RR, Wade RC (2010) Cross-species analysis of the glycolytic pathway by comparison of molecular interaction fields. Mol BioSyst 6(1):152–164

    Article  PubMed  Google Scholar 

  34. Nicholls A, Sharp KA, Honig B (1991) Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11(4):281–296

    Article  CAS  PubMed  Google Scholar 

  35. Gilson MK, Honig BH (1986) The dielectric constant of a folded protein. Biopolymers 25(11):2097–2119

    Article  CAS  PubMed  Google Scholar 

  36. Simonson T, Perahia D (1995) Internal and interfacial dielectric properties of cytochrome c from molecular dynamics in aqueous solution. Proc Natl Acad Sci U S A 92(4):1082–1086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Bashford D, Case DA (2000) Generalized born models of macromolecular solvation effects. Annu Rev Phys Chem 51:129–152

    Article  CAS  PubMed  Google Scholar 

  38. Kamerlin SC, Warshel A (2011) Multiscale modeling of biological functions. Phys Chem Chem Phys 13(22):10401–10411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry. Science 268(5214):1144–1149

    Article  CAS  PubMed  Google Scholar 

  40. Ren P, Chun J, Thomas DG, Schnieders MJ, Marucho M, Zhang J, Baker NA (2012) Biomolecular electrostatics and solvation: a computational perspective. Q Rev Biophys 45(4):427–491

    Article  PubMed Central  PubMed  Google Scholar 

  41. Simonson T (2001) Macromolecular electrostatics: continuum models and their growing pains. Curr Opin Struct Biol 11(2):243–252

    Article  CAS  PubMed  Google Scholar 

  42. Warshel A, Sharma PK, Kato M, Parson WW (2006a) Modeling electrostatic effects in proteins. Biochim Biophys Acta 1764(11):1647–1676

    Article  CAS  PubMed  Google Scholar 

  43. Pabo CO, Sauer RT (1984) Protein-DNA recognition. Annu Rev Biochem 53:293–321

    Article  CAS  PubMed  Google Scholar 

  44. Weber IT, Steitz TA (1984) Model of specific complex between catabolite gene activator protein and B-DNA suggested by electrostatic complementarity. Proc Natl Acad Sci U S A 81(13):3973–3977

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Warwicker J, Engelman BP, Steitz TA (1987) Electrostatic calculations and model-building suggest that DNA bound to CAP is sharply bent. Proteins 2(4):283–289

    Article  CAS  PubMed  Google Scholar 

  46. Liu-Johnson HN, Gartenberg MR, Crothers DM (1986) The DNA binding domain and bending angle of E. coli CAP protein. Cell 47(6):995–1005

    Article  CAS  PubMed  Google Scholar 

  47. Schultz SC, Shields GC, Steitz TA (1991) Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees. Science 253(5023):1001–1007

    Article  CAS  PubMed  Google Scholar 

  48. Uversky VN (2013) A decade and a half of protein intrinsic disorder: biology still waits for physics. Protein Sci 22(6):693–724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Cawley A, Warwicker J (2012) eIF4E-binding protein regulation of mRNAs with differential 5\(^{\prime }\)-UTR secondary structure: a polyelectrostatic model for a component of protein-mRNA interactions. Nucleic Acids Res 40(16):7666–7675

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Rohs R, West SM, Sosinsky A, Liu P, Mann RS, Honig B (2009) The role of DNA shape in protein-DNA recognition. Nature 461(7268):1248–1253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Chandonia JM, Brenner SE (2006) The impact of structural genomics: expectations and outcomes. Science 311(5759):347–351

    Article  CAS  PubMed  Google Scholar 

  52. Stawiski EW, Gregoret LM, Mandel-Gutfreund Y (2003) Annotating nucleic acid-binding function based on protein structure. J Mol Biol 326(4):1065–1079

    Article  CAS  PubMed  Google Scholar 

  53. Greaves R, Warwicker J (2005) Active site identification through geometry-based and sequence profile-based calculations: burial of catalytic clefts. J Mol Biol 349(3):547–557

    Article  CAS  PubMed  Google Scholar 

  54. Grainger DC, Hurd D, Harrison M, Holdstock J, Busby SJ (2005) Studies of the distribution of Escherichia coli cAMP-receptor protein and RNA polymerase along the E. coli chromosome. Proc Natl Acad Sci U S A 102(49):17693–17698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Gabb HA, Jackson RM, Sternberg MJ (1997) Modelling protein docking using shape complementarity, electrostatics and biochemical information. J Mol Biol 272(1):106–120

    Article  CAS  PubMed  Google Scholar 

  56. Warwicker J (1989) Investigating protein–protein interaction surfaces using a reduced stereochemical and electrostatic model. J Mol Biol 206(2):381–395

    Article  CAS  PubMed  Google Scholar 

  57. Bougouffa S, Warwicker J (2008) Volume-based solvation models out-perform area-based models in combined studies of wild-type and mutated protein–protein interfaces. BMC Bioinform 9:448

    Article  Google Scholar 

  58. Simonson T (2013) Protein: ligand recognition: simple models for electrostatic effects. Curr Pharm Des 19(23):4241–4256

    Article  CAS  PubMed  Google Scholar 

  59. Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32 (Web Server issue):W526–W531

    Google Scholar 

  60. Ngounou Wetie AG, Sokolowska I, Woods AG, Roy U, Deinhardt K, Darie CC (2014) Protein–protein interactions: switch from classical methods to proteomics and bioinformatics-based approaches. Cell Mol Life Sci 71(2):205–228

    Article  CAS  PubMed  Google Scholar 

  61. Lensink MF, Wodak SJ (2013) Docking, scoring, and affinity prediction in CAPRI. Proteins 81(12):2082–2095

    Article  CAS  PubMed  Google Scholar 

  62. Ryan CJ, Cimermancic P, Szpiech ZA, Sali A, Hernandez RD, Krogan NJ (2013) High-resolution network biology: connecting sequence with function. Nat Rev Genet 14(12):865–879

    Article  CAS  PubMed  Google Scholar 

  63. Maneg O, Malatesta F, Ludwig B, Drosou V (2004) Interaction of cytochrome c with cytochrome oxidase: two different docking scenarios. Biochim Biophys Acta 1655(1–3):274–281

    Article  CAS  PubMed  Google Scholar 

  64. Schreiber G (2001) Methods for studying the interaction of barnase with its inhibitor barstar. Methods Mol Biol 160:213–226

    CAS  PubMed  Google Scholar 

  65. Spaar A, Dammer C, Gabdoulline RR, Wade RC, Helms V (2006) Diffusional encounter of barnase and barstar. Biophys J 90(6):1913–1924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Srivastava J, Barber DL, Jacobson MP (2007) Intracellular pH sensors: design principles and functional significance. Physiology (Bethesda) 22:30–39

    Article  CAS  Google Scholar 

  67. Zhang Z, Witham S, Alexov E (2011) On the role of electrostatics in protein–protein interactions. Phys Biol 8(3):035001

    Article  PubMed Central  PubMed  Google Scholar 

  68. Andersen JT, Dalhus B, Viuff D, Gunnarsen KS, Plumridge A, Bunting K, Antunes F, Williamson R, Athwal S, Allan E, Evans L, Bjoras M, Kjaerulff S, Sleep D, Sandlie I, Cameron J (2014) Extending serum half-life of albumin by engineering FcRn binding. J Biol Chem 289(19):13492–13502

    Article  CAS  PubMed  Google Scholar 

  69. Bashford D, Karplus M (1990) pKa’s of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry 29(44):10219–10225

    Article  CAS  PubMed  Google Scholar 

  70. Beroza P, Fredkin DR, Okamura MY, Feher G (1991) Protonation of interacting residues in a protein by a Monte Carlo method: application to lysozyme and the photosynthetic reaction center of Rhodobacter sphaeroides. Proc Natl Acad Sci U S A 88(13):5804–5808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Alexov E, Mehler EL, Baker N, Baptista AM, Huang Y, Milletti F, Nielsen JE, Farrell D, Carstensen T, Olsson MH, Shen JK, Warwicker J, Williams S, Word JM (2011) Progress in the prediction of pKa values in proteins. Proteins 79(12):3260–3275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Warwicker J (2004) Improved pKa calculations through flexibility based sampling of a water-dominated interaction scheme. Protein Sci 13(10):2793–2805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Gane PJ, Freedman RB, Warwicker J (1995) A molecular model for the redox potential difference between thioredoxin and DsbA, based on electrostatics calculations. J Mol Biol 249(2):376–387

    Article  CAS  PubMed  Google Scholar 

  74. Moutevelis E, Warwicker J (2004) Prediction of pKa and redox properties in the thioredoxin superfamily. Protein Sci 13(10):2744–2752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Zheng Z, Gunner MR (2008) Analysis of the electrochemistry of hemes with E(m)s spanning 800 mV. Proteins 75(3):719–734

    Article  Google Scholar 

  76. Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CC (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273(3):729–739

    Article  CAS  PubMed  Google Scholar 

  77. Chiti F, Dobson CM (2009) Amyloid formation by globular proteins under native conditions. Nat Chem Biol 5(1):15–22

    Article  CAS  PubMed  Google Scholar 

  78. Chennamsetty N, Voynov V, Kayser V, Helk B, Trout BL (2009) Design of therapeutic proteins with enhanced stability. Proc Natl Acad Sci U S A 106(29):11937–11942

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Nicholls A, Grant JA (2005) Molecular shape and electrostatics in the encoding of relevant chemical information. J Comput Aided Mol Des 19(9–10):661–686

    Article  CAS  PubMed  Google Scholar 

  80. Wilkinson DL, Harrison RG (1991) Predicting the solubility of recombinant proteins in Escherichia coli. Bio/Technology (Nature Publishing Company) 9(5):443–448

    Article  CAS  Google Scholar 

  81. Niwa T, Ying BW, Saito K, Jin W, Takada S, Ueda T, Taguchi H (2009) Bimodal protein solubility distribution revealed by an aggregation analysis of the entire ensemble of Escherichia coli proteins. Proc Natl Acad Sci U S A 106(11):4201–4206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Chan P, Curtis RA, Warwicker J (2013) Soluble expression of proteins correlates with a lack of positively-charged surface. Sci Rep 3:3333

    PubMed  Google Scholar 

  83. Kramer RM, Shende VR, Motl N, Pace CN, Scholtz JM (2012) Toward a molecular understanding of protein solubility: increased negative surface charge correlates with increased solubility. Biophys J 102(8):1907–1915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Warwicker J, Charonis S, Curtis RA (2014) Lysine and Arginine content of proteins: computational analysis suggests a new tool for solubility design. Mol Pharm 11(1):294–303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Aqvist J, Luzhkov V (2000) Ion permeation mechanism of the potassium channel. Nature 404(6780):881–884

    Article  CAS  PubMed  Google Scholar 

  86. Chan P, Warwicker J (2009) Evidence for the adaptation of protein pH-dependence to subcellular pH. BMC Biol 7:69

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim Warwicker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sazanavets, I., Cawley, A., Warwicker, J. (2015). Electrostatics Models for Biology. In: Rocchia, W., Spagnuolo, M. (eds) Computational Electrostatics for Biological Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-12211-3_1

Download citation

Publish with us

Policies and ethics