SUPPLEMENTARY DATA MANET: tracing evolution of protein architecture in metabolic networks

Hee Shin Kim¹, Jay E. Mittenthal², Gustavo Caetano-Anollés^{1§} ¹Department of Crop Sciences, and ²Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801, USA §Corresponding author

Join operations

We combined information from two or more entities in MANET with the join operation, extending information about the individual entities being considered. For example, we joined "PDBclassification" and "Metabolic-Network-A" together using properties common to both entities (Fig. S1A) and obtained a record set for the new entity "MetabolicNetworkWithPDB", which describes protein fold(s) in enzymes of subnetworks. Similarly, we joined the "MetabolicNetworkWithPDB" and the "Ancestry" entities together using structural PDB entries (Fig. S1B), obtaining a record set for "MetabolicAncestryNetwork" that included the mapping of protein folds and ancestries to enzymes in subnetworks (Fig. S1C). The join operation linked 687 enzymes to protein folds. This represents about 35% of total enzymes associated with pathway information in the KEGG database.

Fig. S1. Join operations in metabolic MANET. The pdb is a common field that links enzymes in "MetabolicNetwork-A" to SCOP assignments in "PDBclassification" (A), creating the record set for the entity "Metabolic-NetworkWithPDB" (B). Classification of fold architectures can then join "MetabolicNetworkWithPDB" with "AncestryValue" (B), creating "MetabolicAncestryNetwork" (C), a file that combines enzyme, fold class, and ancestry value together.

Superfamily prediction using HMMs

In order to increase protein fold assignments to enzymes in metabolic pathways, we used a library of HMMs for remote homology detection in SUPERFAMILY. We used the model library, Perl wrapper scripts for sequence alignment, and the Sequence Alignment and Modeling System (SAM) (http://www.cse.ucsc.edu/research/compbio/sam.html), and ran the SUPERFAMILY software package locally in a 15-node dual-processor Xserve cluster using the genes catalog file obtained from KEEG (ftp://ftp.genome.ad.jp /pub/kegg/tarfiles/genes.tar.gz). This file includes amino acid and nucleotide sequence information from complete or partial genome sequences. As shown in Figure S2A, we constructed a database with the amino acid sequences from KEGG, and used Perl scripts to select sequences associated with the enzymes that had gene assignments but lacked structural PDB information. A total of 20,948 amino acid sequences were selected. We applied the same procedure to enzymes that had gene and structural PDB information but failed to join with the structural SCOP classification. In this case, 5,337 additional amino acid sequences were selected. We distributed sequences into individual compute nodes running the HMM package with a threshold E value of 0.02 and retrieved superfamily IDs that were associated with targeted enzymes. We also retrieved structural classifications corresponding to the superfamily IDs using the SCOP database file, and inserted them into the entity "MetabolicNetwork-B" of the metabolic ancestry network. Joining the "MetabolicNetwork-B" and "Ancestry" entities together resulted in an additional record set defining the entity "MetabolicAncetryNetwork". These operations increased the number of enzymes linked to protein folds.

Fig. S2. HMM-based structural prediction and enzyme coloring schemes. A. Perl scripts retrieved 26,285 amino acid sequences related to enzymes identified by the join operation. HMMs were then used to assign superfamily IDs to sequences using a computer cluster. Enzymes with fold superfamily assignments were finally inserted into "MetabolicNetwork-B" in metabolic MANET. B. The Code Generator outputs PHP files that run on the MANET web server and Visual Basic script files that paint with color those nodes that have enzyme entries in subnetwork diagrams.

Coloring

Coloring is a feature that describes graphically the relative age of a metabolic enzyme in the network. The enzymes in MANET are linked to protein fold(s) to which individual ancestries can be assigned and painted on subnetwork diagrams. To accomplish this, we divided the range of ancestries into 12 classes, giving them individual hues in a color scale. We also developed a 'code generator' that created programming codes that paint the colors corresponding to fold ancestry values on pathway diagrams and PHP files that were used for the web interface of MANET. The code generator was run with the HTML source files and pathway diagrams of the KEGG web interface. Figure S2B describes the computerized procedure for coloring. We first downloaded the KEGG web interface including HTML source files and pathway diagrams. We ran the code generator with the HTML source files. The code generator parsed image maps and hyper links from the files, and created the PHP files and programming codes based on a Visual Basic library. We then ran the programming code with the pathway diagrams on a Windows operating system. As a result, we obtained new pathway diagrams painted with ancestry values.

Fig. S3. Analysis and sorting of metabolic MANET data. A total of 4,362 enzyme entries were retrieved from KEGG, 2,015 of which had subnetwork information (①). Among these, 758 enzymes had structural PDB entries associated with SCOP (②), 687 of which could be successfully linked to protein folds (③) and 674 of which could be painted with ancestry values (④). The remaining 1,257 enzymes with no associated PDB entries and the 71 enzymes that could not be assigned to folds were further analyzed. A total of 584 enzymes were linked to protein folds using HMM superfamily prediction (⑤), 581 of which were painted with ancestry values (⑥). Overall, 1,255 enzymes were linked to protein folds and were colored in metabolic MANET (⑦).

Analysis and sorting of data in metabolic MANET

Figure S3 describes individual steps in the analysis and sorting of data. A total of 4,363 enzyme entries belonging to 137 metabolic pathways were registered in the KEGG pathway database file downloaded on December 2004. Out of these, 2,015 enzymes had subnetwork information. We assumed that these enzymes represent adequately the 132 metabolic subnetworks described in KEGG. Among these, 758 had structural PDB entries associated with them that could be used to assign SCOP folds architectures to metabolic nodes. We used a join operation to link 687 enzymes success-

fully to protein folds and 674 of them to ancestry values. The remaining 1,257 enzymes with no associated PDB entries and the 71 enzymes that could not be assigned to folds were subjected to HMM fold superfamily prediction (see Fig. S2A). As a result, 584 enzymes could be linked to folds, 581 of which were assigned ancestry values. A total of 1,255 enzymes were finally linked to protein folds and were painted in subnetworks. This represents 63% of all nodes in the metabolic network.

Contact information

THE MANET PROJECT, Atelier of Plant Bioinformatics, Department of Crop Sciences, University of Illinois, 1101 W Peabody Drive, Urbana, IL 61801, USA. Fax: 217-333-8046. E-mail: evolutionary-manet@uiuc.edu.

Table 1. Painting efficiency in metabolic MANET

					map00550 Peptidoglycan biosynthesis
KEGG patl	ıway	N _{KEGG}	N _{MANET}	%	map00561 Glycerolipid metabolism
	-				map00562 Inositol phosphate metabolism
map00010	Glycolysis-gluconeogenesis	38	3 35	92.10	map00580 Phospholipid degradation
map00020	Citrate cycle (TCA cycle)	23	3 20	86.96	map00590 Prostaglandin-leukotriene metabolism
map00030	Pentose phosphate pathway	33	3 26	78.79	map00600 Glycosphingolipid metabolism
map00031	Inositol metabolism	5	5 5	100	map00602 Blood glycolipid biosynthesis peolect
map00040	Pentose-glucuronate interconversions	50) 32	64	map00602 Bloba gryconpid blosynthesis-neolaet.
map00051	Fructose and mannose metabolism	58	3 37	63.79	map00604 Ganglioside biosynthesis
map00052	Galactose metabolism	36	5 28	77.78	map00004 Gangnoside biosynthesis
map00053	Ascorbate and aldarate metabolism	25	5 13	52	map00621 Binhenvl degradation
map00061	Fatty acid biosynthesis (path 1)	14	13	92.86	map00622 Toluene and xylene degradation
map00062	Fatty acid biosynthesis (path 2)	7	5	71.43	map00623 2.4-Dichlorobenzoate degradation
map00071	Fatty acid metabolism	28	8 20	71.43	map00625 Tetrachloroethene degradation
map00072	Synthesis-degradation of ketone bodies	6	5	83.33	map00626 Nitrobenzene degradation
map00100	Biosynthesis of steroids	31	26	83.87	map00627 1,4-Dichlorobenzene degradation
map00120	Bile acid biosynthesis	23		60.87	map00628 Fluorene degradation
map00130	Ubiquinone biosynthesis	1	6	85./1	map00629 Carbazole degradation
map00140	C21-Steroid normone metabolism	10		08./5	map00630 Glyoxylate-dicarboxylate metabolism
map00150	Androgen and estrogen metabolism	23	0 14	00.8/	map00631 1,2-Dichloroethane degradation
map00190	ATD synthesis	11	9	81.82	map00632 Benzoate degradation via CoA ligation
map00195	ATP synthesis	1		100	map00640 Propanoate metabolism
map00195	Urea cycle metabolism of amino groups	3/	, 3	04.12	map00641 3-Chloroacrylic acid degradation
map00220	Purine metabolism	96	5 79	82 29	map00642 Ethylbenzene degradation
map00230	Pyrimidine metabolism	61	48	78.69	map00643 Styrene degradation
map00240	Glutamate metabolism	34	32	91.43	map00650 Butanoate metabolism
map00251	Alanine and aspartate metabolism	38	30	78.95	map00660 C5-Branched dibasic acid metabolism
map00252	Tetracycline biosynthesis	3	3 1	33.33	map00670 One carbon pool by folate
map00260	Gly. Ser and Thr metabolism	55	5 47	85.45	map00680 Methane metabolism
map00271	Methionine metabolism	23	3 20	86.96	map00/10 Carbon fixation
map00272	Cysteine metabolism	21	14	66.67	map00/20 Reductive carboxylate cycle
map00280	Val, Leu and Ileu degradation	31	24	77.42	map00/30 Thiamine metabolism
map00290	Val, Leu and Ileu biosynthesis	15	5 13	86.67	map00740 Kibollavin metabolism
map00300	Lysine biosynthesis	29	23	79.31	map00760 Nigotinate and nigotinamida matabalism
map00310	Lysine degradation	45	5 24	53.33	map00700 Pantothenate and CoA biosynthesis
map00311	Penicillins-cephalosporins biosynthesis	8	8 6	75	map00780 Biotin metabolism
map00330	Arginine and proline metabolism	67	46	68.66	map00790 Folate biosynthesis
map00340	Histidine metabolism	34	26	76.47	map00791 Atrazine degradation
map00350	Tyrosine metabolism	62	2 37	59.68	map00830 Retinol metabolism
map00360	Phenylalanine metabolism	38	3 24	63.16	map00860 Porphyrin and chlorophyll metabolism
map00361	γ-Hexachlorocyclohexane degradation	9) 8	88.89	map00900 Terpenoid biosynthesis
map00362	Benzoate degradation via hydroxylation	37	23	62.16	map00901 Indole and ipecac alkaloid biosynthesis
map00380	Tryptophan metabolism	52	2 33	63.46	map00902 Monoterpenoid biosynthesis
map00400	Phe, Tyr and Trp biosynthesis	31	28	90.32	map00903 Limonene and pinene degradation
map00401	Novobiocin biosynthesis		b 6	100	map00904 Diterpenoid biosynthesis
map00410	beta-Alanine metabolism	52	2 19	59.37	map00910 Nitrogen metabolism
map00430	A using and hypotaurine metabolism	14		50	map00920 Sulfur metabolism
map00440	Salanaamina aaid matahaliam	21	10	73 05 71	map00930 Caprolactam degradation
map00450	Cyanosmino acid metabolism	21	10	63./1 55.56	map00940 Stilbene, coumarine, lignin biosynthesis
map00400	D Glutamine D glutamate metabolism	10	$\frac{10}{6}$	50.50	map00941 Flavonoid biosynthesis
map00471	D-Arginine and D-ornithine metabolism	12	2 2	25	map00950 Alkaloid biosynthesis I
map00472	D-Alanine metabolism	e	5 4	66 67	map00960 Alkaloid biosynthesis II
map00480	Glutathione metabolism	27	, 13	48.15	map00970 Aminoacyl-tRNA biosynthesis
map00500	Starch and sucrose metabolism	73	58	79.45	map01051 Biosynthesis of ansamycins
map00510	N-Glycan biosynthesis	25	5 17	68	map01053 Biosynthesis of siderophore group
map00511	N-Glycan degradation		8 8	100	map01055 Biosynthesis of vancomycin antibiotics
map00512	O-Glycan biosynthesis	7	7 3	42.86	map02040 Flagellar assembly
map00513	High-mannose N-glycan biosynthesis	2	2 2	100	map03020 KNA polymerase
map00520	Nucleotide sugars metabolism	29) 13	44.83	map03030 DNA polymerase
map00521	Streptomycin biosynthesis	14	10	71.43	map03050 Proteasome
map00522	Biosynthesis of macrolides	2	2 1	50	map03070 Type III secretion system
map00523	Polyketide sugar unit biosynthesis	5	5 4	80	map03090 Type III secretion system
map00530	Aminosugars metabolism	36	5 28	77.78	map05050 Type II secretion system map04070 Phosphatidylinosital signaling system
map00531	Glycosaminoglycan degradation	11	9	81.82	map04120 Ubiquitin mediated proteolysis
map00532	Chondroitin-heparan sulfate biosynthesis	s 15	59	60	map 9+120 Obiquitin mediated proteorysis
map00533	Keratan sulfate biosynthesis	4	5 4	80	N, number of nodes present in each subnetwork and painted

by MANET

map00540 Lipopolysaccharide biosynthesis

25

66.67

65.52

79.17 62.5

63.64

66.67

72.31

27.27

66.67

45.45

76.92

71.43

63.79

66.67

66.67

66.67

68.75

23.81

95.65

61.54

83.33

69.23

91.67

57.14

77.19

6.25

44.44

65.52

9 44.44

19 67.86

90.91

20 83.33

10 58.82

55.56

67.44

18 78.26

47.37

18.92

9.09

8 66.67

16 88.889

87.5