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A numerical approach is proposed in this paper for safety assessment of mechanical structures with age-
related degradation. Deterioration occurs in mechanical structures due to various environmental attacks
and operation conditions which leads to changes in structural performance and structural resistance
capacity. By combining techniques such as degradation evaluation methods, damage mechanics, and
the finite element method, the proposed numerical method can be used to analyse the responses and
damages of mechanical structures with age-related degradation. Ageing degradation effects can be taken
into account by introducing degradation factor into formulations of finite element method and damage
mechanics. The numerical results for a notched bar and a plate with a central hole are provided to validate
the proposed numerical method.

1. Introduction

The ageing of mechanical structures can be defined as partial or total loss of their capacity to achieve
the purpose for which they were constructed via a slow, progressive and irreversible process that occurs
over a period of time. Ageing can lead to changes in engineering properties and may affect the static
and dynamic responses, structural resistance/capacity, failure mode, and location of failure initiation.
The ageing effects may impact the ability of mechanical system to withstand various challenges from
operation, environment, and natural events.

Although engineering materials such as steel and concrete are inherently durable, some engineering
structures may need to be improved because of deficiencies in their design and manufacture or as a result
of environmental attacks. The ageing process can directly affect mechanical structures by changing the
characteristics of the materials of which they are made and leading to a loss in their resistance capacity.
Corrosion, irradiation, elevated temperature, or fatigue effects are the main problems for mild steel.
Common problems to concrete include alkali-aggregate reaction (AAR), freezing and thawing, leach-
ing, sulphate attack, cracking due volume changes led by temperature variation, corrosion of concrete,
debonding of steel, etc.

The safety of existing aged mechanical structures is an important research topic owing to ageing
processes altering their strength and stiffness as well as revised predictions of the maximum loads asso-
ciated with severe operation conditions and environmental attacks. Probabilistic degradation evaluation
approaches, damage/fracture mechanics methods, nondestructive detection methods, etc., can be used
for this purpose.

Time dependent changes in engineering structures are random in nature. Safety evaluation of new
and existing structures can be conducted rationally within a probabilistic framework [Shinozuka 1983].

Keywords: mechanical structures, ageing, age-related degradation, finite element method, damage mechanics, numerical
analysis.
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Probability methods are widely used for condition assessment of existing structures. The mathematical
formalism of a probabilistic risk assessment (PRA) provides a means for identifying ageing structural
components that may play a significant role in mitigating structural risk. Structural condition assessments
supporting a decision regarding continued service can be rendered more sufficient if guided by the logic
of a PRA.

Degradation effects can be quantified with fragility curves developed for both undegraded and de-
graded components. Fragility analysis is a technique for assessing, in probabilistic terms, the capability
of an engineered system to withstand a specified event. Fragility modelling requires a focus on the
behavior of the system as a whole and specifically on things that can go wrong with the system. The
fragility modelling process leads to a median-centered (or likely) estimate of system performance coupled
with an estimate of the variability or uncertainty in performance. Braverman et al. [2004] reported on
a fragility analyses performed for concrete structural members and other passive components of nuclear
power plants (NPPs). Structural performance in the presence of uncertainties is depicted by a fragility
curve (or conditional probability of failure). Ellingwood [1998] addressed the issues related to struc-
tural ageing in probabilistic risk assessment of NPPs and proposed a probabilistic framework to assess
degradation in certain critical structural components or system capacities due to reinforcement corrosion
or concrete deterioration from aggressive environmental influences. Naus et al. [1999] summarized the
research program addressing the ageing of nuclear power plant concrete structures. A reliability-based
methodology was developed that can be used to facilitate quantitative assessments of current and future
structural reliability and performance of concrete structures in NPPs. The methodology is able to take
into account the nature of past and future loads, and randomness in strength and in degradation results
from environmental factors. A methodology was presented by Tekie and Ellingwood [2003] for devel-
oping fragilities of concrete gravity dams to assess their performance against seismic hazards. A robust
system reliability evaluation method was proposed for ageing redundant structures by Wang et al. [1997].
Using the advanced first-order second-moment reliability method, the element-level reliability indices are
calculated for individual piles for several strength limit states. The system-level reliability indices of the
pile group are calculated considering the lateral and vertical deflection limit states. An alternative method
to evaluate the safety of engineering structures is by using damage/fracture methods. When engineering
materials are subjected to unfavourable conditions such as cold and hot working processes, temperature
variations, chemical actions, radiation, mechanical loading, or environmental conditions, microscopic
defects and cracks may develop inside the materials. Such damage causes reduction in strength and
stiffness that may lead to failure and shorten the operating life of the structures. Such deterioration in
mechanical properties of a material is known as a damage process [Valliappan et al. 1990].

Because of the significant influence of damage on engineering material properties, a number of studies
have been carried out on modelling and numerical methods for crack growth in structures under various
loading conditions. Valliappan and his coworkers have been one of the pioneers in developing numerical
methods for the analysis of engineering structures using damage mechanics. For example, from the view-
point of continuum damage mechanics concept, Valliappan and Zhang [1996] addressed the problem of
the effect of microscopic defects and cracks within materials in order to study the behavior of structural
components under different loading conditions. A formulation for elasto-plastic analysis of damage
mechanics problems was developed based on the principles of thermodynamics and the associated finite
element method. A theoretical formulation for isotropic and anisotropic elasto-plastic analysis of static
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and dynamic damage mechanics problems was developed by Zhang and Valliappan [1998a]. The formula-
tions were based on the combination of concepts between the internal energy dissipation and the damage
elasto-plasticity energy potential in terms of a set of internal state variables to explain microstructural
changes in damaged materials. And the formulations were introduced into numerical algorithms of the
finite element techniques for static and dynamic analysis of structures including the effect of damage
[Zhang and Valliappan 1998b].

This paper presents a numerical approach for the safety assessment of mechanical structures with age-
related degradation by combining techniques such as degradation evaluation methods, damage mechanics,
and the finite element method. A notched bar and a plate with a central hole are solved as the examples in
the numerical analysis using the proposed method. The results of the analysis validate that the proposed
method is an efficient tool for safety assessment of aged mechanical structures.

2. Numerical method for safety assessment of aged mechanical structures

A dynamic two-dimensional finite element method coupled with damage mechanics is developed to
evaluate damage initiation and propagation for aged mechanical structures. To take into account the
effect of aged-related degradation on the safety of aged mechanical structures, ageing degradation is
quantified according to various mechanical and environmental attacks under various operation conditions.
The quantified age-related degradation factor is then included in the damage model and the finite element
formulation.

2.1. Quantification of ageing degradation of engineering materials. Age-related degradation of engi-
neering materials such as steel and concrete is a complicated process. Degradation of aged steel can be
classified as either material or physical damage. Material damage occurs when the microstructure of the
metal is modified causing changes in its mechanical properties. For example, degradation mechanisms
that can potentially cause material damage to containment steels include: (i) low-temperature exposure,
(ii) high-temperature exposure, (iii) intergranular corrosion, (iv) dealloying corrosion, (v) hydrogen em-
brittlement, and (vi) neutron irradiation. Primary degradation mechanisms that potentially can cause
physical damage to containment pressure boundary components include: (i) general corrosion (atmo-
spheric, aqueous, galvanic, stray-electrical current, and general biological); (ii) localized corrosion (fili-
form, crevice, pitting, and localized biological); (iii) mechanically assisted degradation (erosion, fretting,
cavitation, corrosion fatigue, surface flaws, arc strikes, and overload conditions); (iv) environmentally
induced cracking (stress-corrosion and hydrogen-induced); and (v) fatigue. Degradation of mild steel
reinforcing concrete can occur as a result of corrosion, irradiation, elevated temperature, or fatigue effects.
Prestressing concrete is susceptible to the same degradation mechanism as mild steel concrete, primarily
due to tendon relaxation and concrete creep and shrinkage.

Ageing is a time-dependent process. Ageing degradation of engineering materials, which accumulates
over time by various processes depending on the operating environment and service conditions, will
reduce the strength of structures or their components. Generally, the ageing degradation of the strength
of a structure or a structural component can be expressed by

R(t) = R0G(t) (1)



1926 SOMASUNDARAM VALLIAPPAN AND CALVIN K. CHEE

in which R0 is the component capacity in the undegraded (original) state and G(t) is a time depen-
dent degradation function defining the fraction of initial strength remaining at time t . The degradation
mechanisms are uncertain, experimental data are lacking, and thus the function G(t) should be treated
as stochastic. However, as it has been found that the variability in G(t) is of minor importance when
compared to mean degradation and local process characteristics, it is assumed that G(t) is deterministic
and equal to mean E[g(t)] = G(t) [Mori and Ellingwood 1993].

Corrosion is one of the main reasons for degradation of aged steel. In this research time-dependent
ageing degradation function for steel is assumed to be given by Broomfield [1997]

G(t) = 1 −
1

1 + Ae−Bt (2)

in which A and B are constant parameters and t is the age of the structure.
It is worth pointing out that Equation (1) is applicable to all structural materials whereas (2) is specif-

ically for steel. However, similar to (2) expressions are available for other materials such as concrete.
In fact, the authors have adopted one such function for the stability evaluation of aged concrete gravity
dams.

2.2. Dynamic finite element analysis of aged mechanical structures using damage mechanics. Since
the safety margin reserved in the critical mechanical structures is large, they are considered to be safe
even against hostile loadings larger than expected in their design. However, past experience shows that
engineering structures are susceptible to ageing degradation under various attacks which may affect the
mechanical characteristics of the structures. Whether the aged mechanical structures can still withstand
the challenges from hostile environments and natural events is of great concern to engineers. Therefore,
time-dependent degradation effects should be included when structural safety and reliability are evaluated
for mechanical structures with age-related degradation.

In the past many investigators have studied the effect of cracking on the dynamic response of engi-
neering structures using the concept of fracture mechanics. The concept of fracture mechanics requires
complete details of initiation and propagation of cracks within the structure and the location. Besides,
the numerical modelling of such individual crack propagation requires special techniques such as quarter-
point element, remeshing, etc. [Murti and Valliappan 1986]. Therefore the application of fracture me-
chanics is limited and for cases in which extensive microcracking may develop, it may not be suitable,
especially in dynamic analysis.

The concept of continuum damage mechanics can be used to study the effect of microcracking on the
dynamic responses of engineering structures [Valliappan and Zhang 1996]. Damage mechanics provides
an average measure of material degradation due to microcracking, interfacial debonding, nucleation, and
coalescence of voids. In the microcracking of brittle materials under tensile stress, damage is regarded
as elastic degradation. This material degradation is reflected in the nonlinear behaviour of the structures.

2.2.1. Finite element equations of motion for aged mechanical structures. Modelling of mechanical
structures can be done using the two-dimensional finite element method. The equation of motion for
the dynamic analysis including damage can be written as

M ËU + C∗ ĖU + EP∗( EU ) = EFs + EFd , (3)
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where M is the mass matrix of the system and consists of element mass matrices me

me
=

∫
�e

ρ(e)NT Nd�,

where ρ(e) and N represent mass density and shape function matrix for an element, respectively, C∗ is
the damping matrix of the system, EP∗( EU ) represents the vector of restoring forces, and EFs and EFd are
static and dynamic loading vectors, respectively. EP∗( EU ) is a nonlinear function of displacement and
stress-strain history depending on the constitutive law. It can be given by

EP∗( EU ) = K∗ EU ,

where K∗ is the system stiffness and is obtained from the assemblage of an element stiffness matrices ke

ke
=

∫
�e

BT Tσ Ẽ∗
(e)

TT
σ Bd�,

where Tσ is the coordinate transformation matrix, Ẽ∗ is the damaged constitutive matrix taking into
account the age-related degradation in the orthotropic damage space, and B is the strain-displacement
matrix.

2.2.2. Damage model and damage evolution. The formulation of a damage model first requires the def-
inition of threshold of damage, which is the condition that initiates the damage. Secondly, the evolution
of damage with loading must be also defined, and it is a function of a measure of strains, stresses, or
energy. This damage evolution can be any of the following forms

Ḋ = Ḋ(σi j (εi j ), D, . . .) or D = D(σi j (εi j ), . . .), (4)

where σi j is the state of stress at a particular point and D is the damage tensor at that point. Also Ḋ
represents the rate of damage. The most common damage kinetic equation that is used widely is based
on a power function of tensile normal stress and was introduced first by Kachanov [1980]:

Ḋ =

AL

(
σ

1 − D

)n

, for σ > σd ,

0, for σ ≤ σd ,

where AL > 0 and n > 1 are material constants depending on the rate of loading, σ is the uniaxial tensile
stress, and σd is the stress at damage threshold. For this model one needs experimental results to obtain
parameters AL and n, but these results are not available for all kinds of loading. As proposed by Bazant
and Lin [1988] and applied by Ghrib and Tinawi [1995], a second model based on Equation (4) (right)
can be used for dynamic analysis.

In the materials, which eventually exhibit strain softening that leads to a complete loss of strength,
the secant modulus decreases with increasing strain [Lubliner et al. 1989]. A widely used assumption is
a triangular stress-strain diagram for uniaxial loading. This gives a linear strain softening relationship.
But various experimental evidences indicate that it is more realistic to assume a strain-softening curve
with a steep initial decline followed by an extended tail [Lubliner et al. 1989]. Then an exponential
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strain-softening model can be given by

σ(ε) =


Eε, for ε ≤ ε0,

f ′
t
(
2e−a(ε−ε0) − e−2a(ε−ε0)

)
, for ε0 < ε < εcr ,

0, for ε ≥ εcr

(5)

in which f ′
t is the tensile strength and ε0 is the corresponding strain threshold, E is the modulus of

elasticity, a is a dimensionless constant, and εcr is the maximum strain. For aged mechanical structures,
E and f ′

t in Equation (5) are given by Equation (1) due to ageing degradation. In this study the value
εcr is calculated when its corresponding stress is equal to 0.02 f ′

t . Then

εcr = ε0 +
ln

( 2+
√

4−4λ
2λ

)
a

.

When λ = 0.02, the maximum strain εcr is calculated by

εcr = ε0 +
4.6
a

.

The fracture energy per unit area, G f , is defined as G f = lchgt , where gt is total area under stress-strain
curve

gt =

∫
∞

0
σ(ε)dε =

3 f ′
t

2a
+

f ′
t

2E
,

and lch is the characteristic length. From the above two equations the constant a can be given by

a =
3

ε0

(
2EG f

lch f ′2
t −1

) ≥ 0.

Based on the hypothesis of strain energy equivalence, the anisotropic damage parameters can be
defined in terms of Young’s modulus [Valliappan et al. 1990]

Di = 1 −

√
E∗

i

Ei
,

and hence from Equation (5), the proper definition of damage for the uniaxial case is

Di = 1 −

√(ε0

ε

)(
2e−a(ε−ε0)−e−2a(ε−ε0)

)
.

In the two equations above i represents the i-th principal direction.

3. Numerical analysis

Two examples – a notched bar and a plate with a central hole – are used for the numerical analysis to
validate the proposed method for safety assessment of aged mechanical structures.

Figure 1 shows the model of the notched bar and its finite element mesh discretization. The dimension
of the bar is 10 cm × 30 cm. Distributed step loading of 1560 kN/cm−1, which is shown in Figure 2, is
applied at one end of the bar in longitudinal direction. The notched bar is modeled as a two-dimensional
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30cm 45
0 

1.5cm 

10cm 
element 99 element 105 

node 1 

Figure 1. Notched bar and its finite element mesh discretization.

plane stress case and is discretized with four nodded isoparametric elements. Because of the symmetries
of geometry and loading, the notched bar is discretized with 105 elements and 128 nodes. The material
properties of the bar are chosen as follows: modulus of elasticity E = 2.0 × 1011 Pa; Poisson’s ratio
ν = 0.28; density ρ = 7850.0 kg/m−3; tensile strength f ′

t = 4.0 × 108 Pa, and fracture energy for unit
area G f = 2.6 × 106 N/m−1.

To include ageing degradation effect in the numerical analysis, a degradation function given by Equa-
tion (2) is used to modify the modulus of elasticity and tensile strength of the material. Parameters A and
B in Equation (2) are the two constants that define the ageing degradation effect. In order to determine
their effect on the system responses and damages, in the present study parameter A is considered to be a
fuzzy variable, while parameter B is considered to be a deterministic parameter. It was found that B is
more sensitive to the ageing degradation. Therefore the values of 0.125 and 0.25 were assigned to param-
eter B in the numerical analysis to simulate the degradation processes under different environmental and
working conditions. The value of A is set to 100. Figure 3 shows the deterioration curves of different B
values used in the numerical analysis.

t 

P 

1560 

Figure 2. Step loading: P = 1560 kN/cm.
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Figure 3. Degradation function of steel.

In this study the equation of motion (Equation (3)) in the time domain is solved using Newmark’s
integration method, which is unconditionally convergent. In selecting the time step the natural frequency
of the structure and the type of loading must be considered. However, in the present case, because of
the step loading, it is necessary to consider only the loading, and hence the time step is set as 0.01 s to
check the system responses and damages. Structural responses and damage parameters were obtained
for both cases of B = 0.125 (up to 40 years) and B = 0.25 (up to 20 years) to check the effect of ageing
degradation on the behaviour of the notched bar.

Age = 15 Age = 35 Age = 37 

Damage scale 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 

Figure 4. Damage patterns of the notched bar (B = 0.125).
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Figure 5. Global damage, displacement of node 1, and major principal stress, major
principal strain, and stress-strain relationship of element 99, respectively, of the notched
bar (B = 0.125).
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Damage scale 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 

Age = 8 Age = 17 Age = 18 

Figure 6. Damage patterns of the notched bar (B = 0.25).

For the case of B = 0.125 Figure 4 shows the damage pattern of the notched bar at times of 15, 35,
and 37 years, and Figure 5 shows the global damage index. The global damage index is defined by the
following equation

Dglobal =

√√√√ nel∑
e=1

∫
�e

(
D(e)

)2 d�e

/√√√√ nel∑
e=1

∫
�e

d�e (6)

in which D(e) is the damage of the e-th element and ‘nel’ represents the total number of the damaged
elements. In determining the damage to the entire structure, it is desirable to take into account the
cumulative effect of the damage occurring in parts of the structure, which are individual elements in the
finite element method. It is well known that there is a size effect when discretization techniques are used.
In the present study this cumulative effect is represented by the expression given in Equation (6) for the
purpose of illustrating the damage to the structure due to ageing degradation. If one desires, any other
alternative expression can be developed for this purpose.

These two figures show that the damage occurs when the bar is 15 years of age and then extends
gradually to the direction of 45◦ as the age of the bar increases. After 37 years, the damage increases
significantly which leads to the failure of the notched bar. Figure 5 shows the displacement at node 1. As
the age of the notched bar increases, the strength of the material decreases which results in an increase
of displacement and damage. Also shown in Figure 5 are the major principal stress, strain, and their
relationship of element 99, respectively.

Figure 6 shows the damage pattern of the notched bar at 8, 17, and 18 years for the case of B = 0.25, and
Figure 7 shows the global damage index. Because the notched bar has suffered more ageing degradation
than the case of B = 0.125, the damage initiates at the age of 8 years and increases dramatically to total
failure after 18 years. Also shown in Figure 7 are the displacement of node 1, the major principal stress,
strain, and their relationship of element 99, respectively.
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Figure 7. Global damage, displacement of node 1, and major principal stress, major
principal strain, and stress-strain relationship of element 99, respectively, of the notched
bar (B = 0.25).



1934 SOMASUNDARAM VALLIAPPAN AND CALVIN K. CHEE

element 92 

10cm 

2.5cm 

30cm 

node 1 

Figure 8. A plate with a central hole and its finite element mesh discretization.

Figure 8 shows the plate model and its finite element mesh. The dimension of the plate is 10 cm
× 30 cm, and the diameter of the central hole is 2.5 cm. Distributed step loading is also used in the
analysis of which the amplitude is 1380 kN/cm−1. Four nodded isoparametric elements are used in finite
element discretization, and the plate is discretized into 92 elements and 120 nodes due to the symmetries
of geometry and loading. The material properties of the plate are assumed to be the same as those of the
notched bar. The analysis is carried out for the two different deterioration rate B = 0.125 and B = 0.25,
respectively.

Age = 14 Age = 35 Age = 37 

Damage scale 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 

Figure 9. Damage patterns of the plate (B = 0.125).
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Figure 20. Major principal stress: element 92 of the plate (B=0.125) 
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Figure 10. Global damage, displacement of node 1, and major principal stress, major
principal strain, and stress-strain relationship of element 92, respectively, of the notched
bar (B = 0.125).
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 Age = 7 Age = 17 Age = 19 

Damage scale 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 

Figure 11. Damage patterns of the plate (B = 0.25).

Figure 9 shows the damage pattern of the plate model at 14, 35, and 37 years and Figure 10 shows
the global damage index for the case of B = 0.125. Damage occurs firstly in element 92 at 14 years
and then extends in the direction orthogonal to the loading as the plate suffers more ageing deterioration.
Damage increases significantly after 37 years and leads to total failure of the plate. Figure 10 shows the
displacement of node 1 at different times and the major principal stress, strain, and their relationship of
element 92, respectively.

For the case of B = 0.25 Figures 11 and 12 show the damage pattern of the plate and the global
damage index at 7, 17 and 19 years. Because of more severe ageing degradation for this case, the plate
is damaged initially in element 92 at 7 years and the damage increases gradually up to 18 years. The
damage increases sharply at 19 years which then leads to total failure. The displacement at node 1 is
shown in Figure 12. It shows the same trend as the global damage index. Figure 12 also shows the major
principal stress, strain, and their relationship of element 92, respectively.

4. Conclusions

Ageing is a natural phenomenon via a slow process for mechanical structures due to environmental attacks
and operation conditions. Age-related degradation can reduce the strength, change physical properties of
the mechanical structures, which may result in the decrease of the their capacity to withstand operation
conditions and hostile natural events.

The method presented in this paper is for numerical analysis of mechanical structures with ageing
degradation effect. Using techniques such as the finite element method, damage mechanics, and ageing
degradation evaluation methods, this method can be used for safety assessment of aged mechanical
structures by obtaining initiation and propagation of structural damage over a long period of time. The
proposed method was validated by numerical analyses of a notched bar and a plate with a central hole.
Under step loading condition, structural responses, damage initiation and propagation were studied in
detail for different levels of degradation over a period of several decades. Numerical results show ageing
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Figure 28. Stress-strain relationship: element 92 of the plate (B=0.25) 
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Figure 12. Global damage, displacement of node 1, and major principal stress, major
principal strain, and stress-strain relationship of element 92, respectively, of the notched
bar (B = 0.25).
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degradation can significantly affect structural performance and more severe damages occur for mechan-
ical structures when ageing degradation is included.
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