Advertisement

Abstract

Mutations of the gene Lps selectively impede lipopolysaccharide (LPS) signal transduction in C3H/HeJ and C57BL/10ScCr mice, rendering them resistant to endotoxin yet highly susceptible to Gram-negative infection. The codominantLps d allele of C3H/HeJ mice was shown to correspond to a missense mutation in the third exon of the Toll-like receptor-4 gene (Tlr4), predicted to replace proline with histidine at position 712 of the polypeptide chain. C57BL/10ScCr mice are homozygous for a null mutation of Tlr4. Thus, the mammalian Tlr4 protein has been adapted primarily to subserve the recognition of LPS and presumably transduces the LPS signal across the plasma membrane. Destructive mutations of Tlr4 predispose to the development of Gram-negative sepsis, leaving most aspects of immune function intact.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

File (985613.xhtml)

REFERENCES AND NOTES

1
Pinner R. W., et al., J. Am. Med. Assoc. 275, 189 (1996).
2
A. D. O'Brien et al., J. Immunol.124, 20 (1980).
3
D. L. Rosenstreich, A. C. Weinblatt, A. D. O'Brien, CRC Crit. Rev. Immunol. 3, 263 (1982).
4
Sultzer B. M., Nature 219, 1253 (1968).
5
Rosenstreich D. L., Glode M. L., Mergenhagen S. E., J. Infect. Dis. 136, S239 (1977).
6
Apte R. N., Ascher O., Pluznik D. H., J. Immunol. 119, 1898 (1977).
7
Rosenstreich D. L., Vogel S. N., Jacques A. R., Wahl L. M., Oppenheim J. J., ibid. 121, 1664 (1978).
8
Michalek S. M., Moore R. N., McGhee J. R., Rosenstreich D. L., Mergenhagen S. E., J. Infect. Dis. 141, 55 (1980).
9
S. N. Vogel, Tumor Necrosis Factors: The Molecules and Their Emerging Role in Medicine, B. Beutler, Ed. (Raven, New York, 1992), p. 485.
10
Coutinho A., Meo T., Immunogenetics 7, 17 (1978).
11
Coutinho A., Forni L., Melchers F., Watanabe T., Eur. J. Immunol. 7, 325 (1977).
12
Vogel S. N., Hansen C. T., Rosenstreich D. L., J. Immunol. 122, 619 (1979).
13
Tobias P. S., Soldau K., Ulevitch R. J., J. Biol. Chem. 264, 10867 (1989).
14
Schumann R. R., et al., Science 249, 1429 (1990).
15
S. D. Wright, R. A. Ramos, P. S. Tobias, R. J. Ulevitch, J. C. Mathison, ibid., p. 1431.
16
Haziot A., et al., Immunity. 4, 407 (1996).
17
Han J., Lee J.-D., Tobias P. S., Ulevitch R. J., J. Biol. Chem. 268, 25009 (1993).
18
Han J., Lee J.-D., Bibbs L., Ulevitch R. J., Science 265, 808 (1994).
19
Geppert T. D., Whitehurst C. E., Thompson P., Beutler B., Mol. Med. 1, 93 (1994).
20
Kyriakis J. M., et al., Nature 369, 156 (1994).
21
Sanchez I., et al., ibid. 372, 794 (1994).
22
B. Beutler et al., ibid. 316, 552 (1985).
23
B. Beutler,
Milsark I. W., Cerami A. C., Science 229, 869 (1985).
24
Watson J., Riblet R., Taylor B. A., J. Immunol. 118, 2088 (1977).
25
Watson J., Kelly K., Largen M., Taylor B. A., ibid. 120, 422 (1978).
26
Poltorak A., et al., Blood Cells Mol. Dis. 24, 340 (1998).
27
BLAST searches were performed against the nonredundant (NR) GenBank database, the TIGR database of ESTs, and the dbEST database of ESTs. Searches against NR and TIGR databases were performed at both the nucleotide (blastn) and amino acid (blastx) levels. dbEST searches were carried out at the nucleotide level only.
28
Obtained from Oak Ridge National Laboratory via the World Wide Web (compbio.ornl.gov/tools/index.shtml).
29
A. Poltorak et al., data not shown.
30
Kuhns D. B., Long P. D., Gallin J. I., J. Immunol. 158, 3959 (1997).
31
Supplementary Web material for Fig. 2 is available at www.sciencemag.org/feature/data/985613.shl.
32
To monitor the efficiency of reverse transcription and PCR, we used primers specific for the transferrin receptor (TFR) as a positive control when attempting to detect the low-abundance Tlr4 mRNA in macrophage or fetal RNA samples by RT-PCR.
33
Medzhitov R., Preston-Hurlburt P., Janeway C. A., Nature 388, 394 (1997).
34
RAW 264.7 cells, obtained from the American Type Culture Collection, are immortalized LPS-responsive cells, frequently used in studies of LPS signal transduction and TNF gene regulation. RAW 264.7 cells, like primary macrophages, become refractory to LPS for a variable interval of time after a primary stimulus with LPS.
35
Mathison J., Wolfson E., Steinemann S., Tobias P., Ulevitch R., J. Clin. Invest. 92, 2053 (1993).
36
Yang R.-B., et al., Nature 395, 284 (1998).
37
Lemaitre B., Nicolas E., Michaut L., Reichhart J. M., Hoffmann J. A., Cell 86, 973 (1996).
38
Eldon E., et al., Development 120, 885 (1994).
39
Chiang C., Beachy P. A., Mech. Dev. 47, 225 (1994).
40
Williams M. J., Rodriguez A., Kimbrell D. A., Eldon E. D., EMBO J. 16, 6120 (1997).
41
Hu J. X., et al., Genome Res. 7, 693 (1997).
42
We acknowledge the assistance of J. Turner, A. Powelka, R. Jain, R. Clisch, and C. Brady, all summer undergraduate research fellows who worked with us to identify the Lpsd mutation. We are also grateful to the Beutler Family Charitable Trust for providing funds for the purchase of an ABI model 373 sequencer.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 282 | Issue 5396
11 December 1998

Submission history

Received: 30 September 1998
Accepted: 3 November 1998
Published in print: 11 December 1998

Permissions

Request permissions for this article.

Authors

Affiliations

Alexander Poltorak
A. Poltorak, X. He, I. Smirnova, M.-Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, B. Layton, B. Beutler, Howard Hughes Medical Institute and the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235–9050 USA. C. Galanos and M. Freudenberg, Max-Planck Institute für Immunobiologie, Freiburg, Germany. P. Ricciardi, CNR–Cellular and Molecular Pharmacology Center, Milan, Italy.
Xiaolong He*
A. Poltorak, X. He, I. Smirnova, M.-Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, B. Layton, B. Beutler, Howard Hughes Medical Institute and the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235–9050 USA. C. Galanos and M. Freudenberg, Max-Planck Institute für Immunobiologie, Freiburg, Germany. P. Ricciardi, CNR–Cellular and Molecular Pharmacology Center, Milan, Italy.
Irina Smirnova
A. Poltorak, X. He, I. Smirnova, M.-Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, B. Layton, B. Beutler, Howard Hughes Medical Institute and the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235–9050 USA. C. Galanos and M. Freudenberg, Max-Planck Institute für Immunobiologie, Freiburg, Germany. P. Ricciardi, CNR–Cellular and Molecular Pharmacology Center, Milan, Italy.
Mu-Ya Liu
A. Poltorak, X. He, I. Smirnova, M.-Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, B. Layton, B. Beutler, Howard Hughes Medical Institute and the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235–9050 USA. C. Galanos and M. Freudenberg, Max-Planck Institute für Immunobiologie, Freiburg, Germany. P. Ricciardi, CNR–Cellular and Molecular Pharmacology Center, Milan, Italy.
Christophe Van Huffel
A. Poltorak, X. He, I. Smirnova, M.-Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, B. Layton, B. Beutler, Howard Hughes Medical Institute and the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235–9050 USA. C. Galanos and M. Freudenberg, Max-Planck Institute für Immunobiologie, Freiburg, Germany. P. Ricciardi, CNR–Cellular and Molecular Pharmacology Center, Milan, Italy.
Xin Du
A. Poltorak, X. He, I. Smirnova, M.-Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, B. Layton, B. Beutler, Howard Hughes Medical Institute and the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235–9050 USA. C. Galanos and M. Freudenberg, Max-Planck Institute für Immunobiologie, Freiburg, Germany. P. Ricciardi, CNR–Cellular and Molecular Pharmacology Center, Milan, Italy.
Dale Birdwell
A. Poltorak, X. He, I. Smirnova, M.-Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, B. Layton, B. Beutler, Howard Hughes Medical Institute and the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235–9050 USA. C. Galanos and M. Freudenberg, Max-Planck Institute für Immunobiologie, Freiburg, Germany. P. Ricciardi, CNR–Cellular and Molecular Pharmacology Center, Milan, Italy.
Erica Alejos
A. Poltorak, X. He, I. Smirnova, M.-Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, B. Layton, B. Beutler, Howard Hughes Medical Institute and the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235–9050 USA. C. Galanos and M. Freudenberg, Max-Planck Institute für Immunobiologie, Freiburg, Germany. P. Ricciardi, CNR–Cellular and Molecular Pharmacology Center, Milan, Italy.
Maria Silva
A. Poltorak, X. He, I. Smirnova, M.-Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, B. Layton, B. Beutler, Howard Hughes Medical Institute and the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235–9050 USA. C. Galanos and M. Freudenberg, Max-Planck Institute für Immunobiologie, Freiburg, Germany. P. Ricciardi, CNR–Cellular and Molecular Pharmacology Center, Milan, Italy.
Chris Galanos
A. Poltorak, X. He, I. Smirnova, M.-Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, B. Layton, B. Beutler, Howard Hughes Medical Institute and the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235–9050 USA. C. Galanos and M. Freudenberg, Max-Planck Institute für Immunobiologie, Freiburg, Germany. P. Ricciardi, CNR–Cellular and Molecular Pharmacology Center, Milan, Italy.
Marina Freudenberg
A. Poltorak, X. He, I. Smirnova, M.-Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, B. Layton, B. Beutler, Howard Hughes Medical Institute and the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235–9050 USA. C. Galanos and M. Freudenberg, Max-Planck Institute für Immunobiologie, Freiburg, Germany. P. Ricciardi, CNR–Cellular and Molecular Pharmacology Center, Milan, Italy.
Paola Ricciardi-Castagnoli
A. Poltorak, X. He, I. Smirnova, M.-Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, B. Layton, B. Beutler, Howard Hughes Medical Institute and the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235–9050 USA. C. Galanos and M. Freudenberg, Max-Planck Institute für Immunobiologie, Freiburg, Germany. P. Ricciardi, CNR–Cellular and Molecular Pharmacology Center, Milan, Italy.
Betsy Layton
A. Poltorak, X. He, I. Smirnova, M.-Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, B. Layton, B. Beutler, Howard Hughes Medical Institute and the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235–9050 USA. C. Galanos and M. Freudenberg, Max-Planck Institute für Immunobiologie, Freiburg, Germany. P. Ricciardi, CNR–Cellular and Molecular Pharmacology Center, Milan, Italy.
Bruce Beutler§
A. Poltorak, X. He, I. Smirnova, M.-Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, B. Layton, B. Beutler, Howard Hughes Medical Institute and the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235–9050 USA. C. Galanos and M. Freudenberg, Max-Planck Institute für Immunobiologie, Freiburg, Germany. P. Ricciardi, CNR–Cellular and Molecular Pharmacology Center, Milan, Italy.

Notes

§
To whom correspondence should be addressed at Howard Hughes Medical Institute, 5323 Harry Hines Boulevard, Dallas, TX 75235–9050, USA.

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Periodontitis and lipopolysaccharides: How far have we understood?, Exploration of Immunology, (129-151), (2024).https://doi.org/10.37349/ei.2024.00133
    Crossref
  2. Hyperglycaemia Aggravates Oxidised Low-Density Lipoprotein-Induced Schwann Cell Death via Hyperactivation of Toll-like Receptor 4, Neurology International, 16, 2, (370-379), (2024).https://doi.org/10.3390/neurolint16020027
    Crossref
  3. The Effect of Enteric-Derived Lipopolysaccharides on Obesity, International Journal of Molecular Sciences, 25, 8, (4305), (2024).https://doi.org/10.3390/ijms25084305
    Crossref
  4. AIBP: A New Safeguard against Glaucomatous Neuroinflammation, Cells, 13, 2, (198), (2024).https://doi.org/10.3390/cells13020198
    Crossref
  5. Extracellular Nicotinamide Phosphoribosyltransferase Is a Therapeutic Target in Experimental Necrotizing Enterocolitis, Biomedicines, 12, 5, (970), (2024).https://doi.org/10.3390/biomedicines12050970
    Crossref
  6. Dose-Dependent Effects of Lipopolysaccharide on the Endothelium—Sepsis versus Metabolic Endotoxemia-Induced Cellular Senescence, Antioxidants, 13, 4, (443), (2024).https://doi.org/10.3390/antiox13040443
    Crossref
  7. The first embryo, the origin of cancer and animal phylogeny. IV. The neoplastic basis for the formation of the innate immune system, Frontiers in Ecology and Evolution, 11, (2024).https://doi.org/10.3389/fevo.2023.1260930
    Crossref
  8. Phospholipids impact the protective effects of HDL-mimetic nanodiscs against lipopolysaccharide-induced inflammation, Nanomedicine, (2024).https://doi.org/10.2217/nnm-2023-0222
    Crossref
  9. A comparative study of apoptosis, pyroptosis, necroptosis, and PANoptosis components in mouse and human cells, PLOS ONE, 19, 2, (e0299577), (2024).https://doi.org/10.1371/journal.pone.0299577
    Crossref
  10. Metal-based interventions in the immune “molecular machinery”, SCIENTIA SINICA Chimica, (2024).https://doi.org/10.1360/SSC-2023-0256
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media