Skip to main content
Log in

Land bridge and long-distance dispersal—Old views, new evidence

  • Review
  • Published:
Chinese Science Bulletin

Abstract

The study of land bridge based on continental drift and long-distance dispersal are gaining increasing attention in biogeography. We review several major dispersal theories including the Malpigiacea route, patterns of chameleon dispersal and the floating island model. The Malpigiaceae route indicates that the Malpigiaceae family originated in northern South America and that members of several clades migrated into North America and subsequently moved via north Atlantic land connections into the Old World starting in the Eocene. This route may also explain many other pantropic disjunction patterns, including some Chinese plants disjunctions, involving South America. Not all biogeographical distribution patterns can be explained by vicariance theory, so more research, including chameleon distribution, has recently focused on long-distance dispersal. The latest analyses suggest that chameleons have dispersed over long-distances from Madagascar on several occasions. The floating island model would explain flora and fauna similarities between South America and Africa. Studying long-distance dispersal mechanisms is important for understanding distribution patterns and even the spread of pandemics. More research on the specific implications of long-distance dispersal for biogeography is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li J J, Fang X M. Uplift of the Tibetan Plateau and environmental changes. Chin Sci Bull, 1999, 44(23): 2117–2124

    Article  Google Scholar 

  2. Henning W. Phylogenetic Systematics. Urbana: Univ Illinois Press, 1966

    Google Scholar 

  3. Wiely E O. Phylogenefic systematics and vicariance biogeography. Syst Zool, 1988, 37: 271–290

    Article  Google Scholar 

  4. Nelson G, Platnick N I. Sytematics and Biogeography: Cladistics and Vacariance. New York: Columbia Univ Press, 1981

    Google Scholar 

  5. Zhou M Z, Zhang N M, Chen Y Y, et al. Vicariance Biogeography Translation Corpus (in Chinese). Beijing: Encyclopedia of China Publishing House, 1996

    Google Scholar 

  6. Rieppel O. A case of dispersing chameleons. Nature, 2002, 415: 744–745

    Google Scholar 

  7. Raven P H, Axelrod D I. Angiosperm biogeography and past continental movements. Ann Missouri Bot Gard, 1974, 61: 539–673

    Article  Google Scholar 

  8. Vogel S, History of the Malpighiaceae in the light of pollination ecology. Mem N Y Bot Gard, 1990, 55: 130–142

    Google Scholar 

  9. Doyle J A, Sauquet H, Scharaschin T, et al. Phylogeny, molecular and fossil dating, and biogeographic history of Annonaceae and Myristicaceae (Magnoliales). Int J Plant Sci, 2004, 165(suppl 4): s35–s67

    Google Scholar 

  10. Crepet W, Nixon K, Gandolfo M A. Fossil evidence and phylogeny: The age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous deposits. Am J Bot, 2004, 91(10): 1666–1682

    Google Scholar 

  11. Sun G, Dilcher D L, Zheng S, et al. In search of the first flower: A Jurassic angiosperm, Archaefructus, from northeast China. Science, 1998, 282: 1692–1695

    Article  Google Scholar 

  12. Sun G, Ji Q, Dilcher D L, et al. Archaefructaceae, a new basal angiosperm family. Science, 2002, 296: 899–904

    Article  Google Scholar 

  13. Doly J A. Molecular, morphology, fossil, and the relationship of angiosperm and Gnetales. Mol Phylogent Evol, 1998, 9: 448–462

    Article  Google Scholar 

  14. Matthews S, Donoghue M J. The root of angiosperm phylogeny inferred from duplicate phytochrome genes, Science, 1999, 286: 947–950

    Article  Google Scholar 

  15. Crane P R, Blackmore S. Evolution, Systematics, and Fossil History of the Hamamelidae, Oxford: Clarendon Press, 1989. 1–353

    Google Scholar 

  16. Crepet W L, Nixon K C. The fossil history of stamens. In: D’Arcy W G, Keating R C, eds. The Anther: Form, Function and Phylogeny. Cambridge: Cambridge Univ Press, 1996. 25–57

    Google Scholar 

  17. Gandolfo M A, Nixon K C, Crepet W L, et al. Oldest known fossil flowers of monocotyledons. Nature, 1998, 394: 532–533

    Article  Google Scholar 

  18. Gandolfo M A, Nixon K C, Crepet W L. Monocotyledons: A review of their early Cretaceous record. In: Wilson K, Morrison D. eds. Proceedings of the Second International Conference on the Comparative Biology of the Monocotyledons. Sydney: CSIRO, 2000. 44–52

    Google Scholar 

  19. Zhou Z K, Crepet W L, Nixon K C. The earliest fossil evidence of the Hamamelidaceae: Late Cretaceous (Turonian) Inflorescences and fruits of Altingioideae. Am J Bot, 2001, 88(5): 753–766

    Google Scholar 

  20. Nixon K C. Paleobotany in cladistics and cladistics in paleobotany: Enlightenment and uncertainty. Rev Paleobot Palynol, 1996, 90: 361–373

    Article  Google Scholar 

  21. Nixon K C. The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics, 1999, 15: 407–414

    Article  Google Scholar 

  22. Crane P R, Friis E M, Pedersen K R. The origin and early diversification of angiosperms. Nature, 1995, 374: 27–33

    Article  Google Scholar 

  23. Davis C C, Bell C D, Mathews S, et al. Laurasian migration explains Gondwanan disjuntions: Evidence from Malpighiaceae. Proc Natl Acad Sci USA, 2002, 99(10): 6833–6837

    Article  Google Scholar 

  24. Magallón S, Sanderson M J. Absolute diversification rates in angiosperm clades. Evolution, 2001, 55: 1762–1780

    Google Scholar 

  25. Scotese C R. Earth history Volume 1: Paleogeography Paleomap. Texas: Project ArLington, 2001. 52

    Google Scholar 

  26. Raxworthy C J, Forstner M R J, Nussbaum R A. Chameleon radiation by oceanic dispersal. Nature, 2002, 415: 784–787

    Google Scholar 

  27. Week A, Daly A W, Simpson B B. The Phylogenetic history and biogeography of the frankincense and myrrh family (Burseraceae) based on nuclear and chloroplast sequence data. Mol Phylogenet Evol, 2005, 35(1): 85–101

    Article  Google Scholar 

  28. Fritsch P W. Phylogeny and biogeography of the flowering plant genus Styrax (Styracaceae) based on chloroplast DNA restriction sites and DNA sequences of the internal transcribed spacer region. Mol Phylogenet Evol, 2001, 19(3): 387–408

    Article  Google Scholar 

  29. Gottschling M, Diane N, Hilger H H, et al. Testing hypothesis on disjunections present in the primarily woody Boraginales: Ehretiaceae, Cordiaceae, and Heliotropiaceae, inferred from ITS, sequence data. Int J Plant Sci, 2004, 165(Suppl 4): s123–s135

    Article  Google Scholar 

  30. Renner S S. Tropical trans-Atlantic disjunctions, sea surface currents, and wind patterns. Int J Plant Sci, 2004, 165(suppl 4): s23–s33

    Article  Google Scholar 

  31. Nathan R. Long-distance dispersal research: Building a network of yellow brick roads. Diversity Distrib, 2005, 11(2): 125–130

    Article  Google Scholar 

  32. Nie Z L, Wen J, Sun H, et al. Monophyly of Kelliogia Torr Ex Benth (Rubiaceae) and evolution of its intercontinental disjunction between western North American and Eastern Asia. Am J Bot, 2005, 92(4): 642–652

    Google Scholar 

  33. Houle A. Floating islands: A mode of long-distance dispersal for small to medium-sized terrestrial vertebrates. Diversity Distrib, 1998, 4(5–6): 201–216

    Google Scholar 

  34. Houle A. The origin of platyrrhines: An evaluation of the antarctic scenario and the floating island model. Am J Phys Anthropol, 1999, 109(4): 541–559

    Article  Google Scholar 

  35. Darwin C R. On the Origin of Species by Means of Natural Selection, 11th ed. London: John Marry, 1991

    Google Scholar 

  36. Nathan R. The challenges of studying dispersal. Trends Ecol Evol, 2001, 16: 481–483

    Article  Google Scholar 

  37. Wu C Y, Lu A M, Tang Y C, et al. The Families and Genera of Angiosperms in China: A Comprehensive Analysis (in Chinese). Beijing: Science Press, 2003. 1–47

    Google Scholar 

  38. Wu C Y, Zhou Z K, Li D Z, et al. The areal-types of world families of seed plants. Act Bot Yunnan (in Chinese), 2003, 25(3): 245–257

    Google Scholar 

  39. Zhou Z K. Origin, systematics and distribution of Cloranthaceae. Act Bot Yunnan (in Chinese), 1993, 15(4): 321–331

    Google Scholar 

  40. Anderson W R. The origin of the Malpighiaceae: the evidence from morphology. Mem N Y Bot Gard, 1990, 64: 210–224

    Google Scholar 

  41. Davis C C, Anderson W R, Donoghue M J. Phylogeny of Malpighiaceae: Evidence from chloroplast ndhF and trnL-F nucleotide sequences. Am J Bot, 2001, 88(10): 1830–1846

    Google Scholar 

  42. Cameron K M, Chase M W, Anderson W R, et al. Molecular systematics of Malpighiaceae: Evidence from plastid rbcL and matK sequence. Am J Bot, 2001, 88(10): 1847–1862

    Google Scholar 

  43. MacPhee R D E, Iturralde-Vinent M A. Origin of the Great Antillean land mammals, 1: New Tertiary fossils from Cuba and Puerto Rico. Am Mus Novitates, 1995, 3141: 1–31

    Google Scholar 

  44. Iturralde-Vinent M A, MacPhee R D E. Paleogeography of the Caribbean region: Implications for Cenozoic biogeography. Bull Am Mus Nat Hist, 1999, 238: 1–95

    Google Scholar 

  45. Tiffney B H. The Eocene North Atlantic land bridge: Its importance in Tertiary and modern phytogeography of the Northern Hemisphere. J Arnold Arbor Harv Univ, 1985, 66: 243–273

    Google Scholar 

  46. Renner S S, Clausing G, Meyer K. Historical biogeography of Melastomataceae: The roles of Tertiary migration and long-distance dispersal. Am J Bot, 2001, 88(7): 1290–1300

    Google Scholar 

  47. Chanderbali A S, van der Werff H, Renner S S. Phylogeny and historical biogeography of Lauraceae: Evidence from the chloroplast and nuclear genomes. Ann Missouri Bot Gard, 2001, 88: 104–134

    Article  Google Scholar 

  48. Klaver C J J, Bohme W. Phylogeny and classification of the Chameleonidae (Sauria) with special reference to hemipenis morphology. Bonn Zool Mon, 1986, 22: 1–64

    Google Scholar 

  49. Rieppel O, Crumley C. Paedomorphosis and skull structure in Malagasy chameleons (Reptilia: Chamaelondiae). J Zool Lond, 1997, 243: 351–380

    Article  Google Scholar 

  50. Rieppel O. The phylogenetic relationships within the Chamaeleonidae, with comments on some aspects of cladistic analysis. Zool J Linn Soc, 1987, 89: 41–62

    Google Scholar 

  51. Vences M. Origin of Madagascar’s extant fauna: A perspective from amphibians, reptiles and other non-flying vertebrates. Ital J Zool, 2004, 2(suppl): 217–228

    Article  Google Scholar 

  52. McCall R A. Implications of recent geological investigations of the Mozambique Channel for the mammalian colonization of Madagascar. Proc Biol Sci, 1997, 264: 663–665

    Article  Google Scholar 

  53. Wallace A R. The Geographical Distribution of Animals. New York: Harper and Brothers, 1876

    Google Scholar 

  54. Higgins S I, Nathan R, Cain M L. Are long-distance dispersal events in plants usually caused by nonstandard means of dispersal? Ecology, 2003, 84(8): 1945–1956

    Google Scholar 

  55. Higgins S I, Richardson D M. Predicting plant migration rates in a changing world: The role of long-distance dispersal. Am Nat, 1999, 153: 464–475

    Article  Google Scholar 

  56. Cain M L, Dumman H, Muir A. Seed dispersal and the Holocene migration of woodland herbs. Ecol Monogr, 1998, 68(3): 325–347

    Article  Google Scholar 

  57. Wilkinson D M. Plant colonization: Are wind dispersed seeds really dispersed by birds at large spatial and temporal scales? J Biogeogr, 1997, 24: 61–65

    Google Scholar 

  58. Clark J S. Why trees migrate so fast: Confronting theory with dispersal biology and the paleorecord. Am Nat, 1998, 152: 204–224

    Article  Google Scholar 

  59. Nathan R. Seeking the secrets of dispersal. Trends Ecol Evol, 2003, 8(6): 275–276

    Article  Google Scholar 

  60. Nathan R, Sapir N, Trakhtenbrot A, et al. Long-distance biological transport processes through the air: Can nature’s complexity be unfolded in silico? Diver Distr, 2005, 11: 131–137

    Article  Google Scholar 

  61. Soons M B, Ozinga W A. How important is longdistance seed dispersal for regional survival of plant species? Diver Distr, 2005, 11: 165–172

    Article  Google Scholar 

  62. Kinlan B P, Gaines S D, Lester S E. Propagule dispersal and the scales of marine community process. Diver Distr, 2005, 11: 139–148

    Article  Google Scholar 

  63. Gottschling M, Lilger H H, Wolf M, et al. Seondary structure of the ITS1 transcript and its application in a reconstruction of the phylogeny of Boraginales. Plant Biol, 2001, 3: 629–636

    Article  Google Scholar 

  64. Mouchaty S K, Catzeflis F, Janke A, et al. Molecular evidence of African Phiomorph-south American Caviomorpha clad and support for Hystricognathi based on the complete mitochondrial genome of the cane rat (Thryonomys swinderianus). Mol Phylogenet Evol, 2001, 18: 127–135

    Article  Google Scholar 

  65. Givnish T J, Millam K C, Evans T M, et al. Ancient vicariance or recent long-distance dispersal? Inferences about phylogeny and south American-African disjunction in Rapateaceae and Bromeliaceae based anbF sequence data. Int J Plant Sci, 2004, 165(suppl 4): s35–s54

    Article  Google Scholar 

  66. Renner S S, Meyer K. Melastomeae come full circle: Bio-geographic reconstruction and molecular clock dating. Evolution, 2001, 55: 1315–1324

    Google Scholar 

  67. Givnish T J, Evans T M, Zjhra M L, et al. Molecular evolution adaptive radiation, and geographica diversification in the amphiatlantic family Rapateaceae: Evidence from ndhF sequence data. Evolution, 2001, 54: 1915–1937

    Google Scholar 

  68. Higgins S I, Lavorel S. Revilla E Estimating plant migration rates under habitat loss and fragmentation. Oikos, 2003, 101: 354–366

    Article  Google Scholar 

  69. Thorne R, Tropical plant disjunctions: A personal reflection. Int J Plant Sci, 2004, 165(suppl 4): s137–s138

    Article  Google Scholar 

  70. Chase M W, Stevenson D W, Wilkin P, et al. Monocot systematics: A combined analysis. In: Rudall P J, Cribb P J, Cutler D F, et al. eds. Monocotyledons: Systematics and Evolution. London: Royal Botanic Gardens, Kew, 1995. 685–703

    Google Scholar 

  71. Wu C Y. The areal-types of Chinese genera of seed plants. Acta Bot Yunnan (in Chinese), 1991, (Suppl 4): 1–6

  72. Wang F, Li D Z, Yang J B. Molecular phylogeny of the Lardizabalaceae based on trnL-F sequence and combined Chloroplast data. Acta Bot Sin, 2002, 44(8): 971–977

    Google Scholar 

  73. Tiffney B H. Fruits and seeds of the Tertiary Brandon Lignite VII: Sargentodoxa (Sargentodoxaceae). Am J Bot, 1993, 80: 517–523

    Article  Google Scholar 

  74. Manchester S R. Biogeographical relationships of North American Tertiary Xoras. Ann Missouri Bot Gard, 1999, 86: 472–522

    Article  Google Scholar 

  75. Zhou Z K, Momohara A. Fossil history of some endemic seed plants of east Asia and its phytogeographical significance. Acta Bot Yannan, 2005, 27(5): 449–470

    Google Scholar 

  76. Schuettpelz E, Hoot S R, Phylogeny and Biogeography of Caltha (Ranunculaceae) based on chloroplast and nuclear DNA sequences. Am J Bot, 2004, 91(2): 247–253

    Google Scholar 

  77. Doyle J A, Thomas A L. Phylogeny and geographic history Annonaceae. Geogr Phys Quatern, 1997, 51: 353–361

    Google Scholar 

  78. Fritsch P W, Phylogeny of Styrax based on morphological characters, with implications for biogeography and infrageneric classification. Syst Bot, 1999, 24: 356–378

    Article  Google Scholar 

  79. Lavin M, Thulin M, Labat J N, et al. Africa, the odd man out: Molecular biogeography of Dalbergioid Legumes (Fabaceae) suggests otherwise. Syst Bot, 2000, 25: 449–467

    Article  Google Scholar 

  80. Davis C C, Bell C D, Fritsch P W, et al. Phylogeny of Acridocarpus brachylophon (Malpighiaceae): Implications for tertiary tropical floras and Afro-asian biogeography. Evolution, 2002b, 56: 2395–2405

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Zhekun.

About this article

Cite this article

Zhou, Z., Yang, X. & Yang, Q. Land bridge and long-distance dispersal—Old views, new evidence. CHINESE SCI BULL 51, 1030–1038 (2006). https://doi.org/10.1007/s11434-006-1030-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-006-1030-7

Keywords

Navigation