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Additional Supplementary Materials 

The following materials are available as separate files from the Nature website: 
 
Supplementary Table 1 
A summary of results from our statistical analysis of uncontrolled outbreaks, 
corresponding to the results shown in Figure 1a-c of the main article. 
 
Supplementary Table 2 
Detailed results from our statistical analysis of uncontrolled outbreaks (elaborating on the 
summary shown in Supplementary Table 1), and from the analysis of data from four 
outbreaks before and after control measures were applied. 
 
Supplementary Figures 
Supplementary Figure 1.  Prediction of SSE frequency. 
Supplementary Figure 2.  Branching process results for Z~NegB(R0,k). 
Supplementary Figure 3.  Impact of control measures. 
Supplementary Figure 4.  Estimation of the negative binomial dispersion parameter k 

      from full datasets and from mean and proportion of zeroes. 
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1.  Supplementary Discussion 

1.1  Factors contributing to variation in infectiousness 

 Here we summarize some of the known factors that contribute to differences in 
infectiousness among individuals, gathered from primary reports (including the SSE reports 
collected in Section 3.2.1, below) and from insightful discussions in the literature1-8.  This is a 
broad and complex topic and we do not intend this section as a complete review—we intend 
simply to delineate important issues and spur further research, which will be required to make 
practical use of the findings presented in the main text, particularly with regard to targeting more-
infectious individuals for control. 
 Variation in individual reproductive number arises due to a combination of host, pathogen 
and environmental effects.  At the host level, distributions of contact rates are often skewed9-13 
and index cases in SSEs are often noted to have high numbers of occupational or social 
contacts7,10,14.  Increased transmission is correlated with host activities that facilitate pathogen 
dispersion, such as food handling15 and singing16,17.  Transmission rates can exhibit strong age-
dependence10,18, and previously vaccinated hosts often are less infectious19,20.  A recent 
experimental study documented substantial variation among human hosts in the amount of 
‘exhaled bioaerosols’ (small droplets of airway-lining fluid) generated during normal breathing, 
suggesting a mechanism for variation in infectiousness for droplet- or aerosol-transmitted 
pathogens21.  (This study also demonstrated a potential means to reduce infectiousness by altering 
airway surface properties using inhaled saline solution.)  Other relevant host factors may include 
hygiene habits, immunocompetence, norms regarding bodily contact, and tendency to seek 
treatment or comply with control measures.   
 Host-pathogen interactions affect transmission rates via variation in pathogen load or 
shedding15,20 and in symptom severity (which may increase transmission via greater shedding or 
decrease transmission due to reduced contact rate10,15,19,20).  Severe coughing, due either to 
pulmonary involvement of the disease in question22,23 or to coinfections with other respiratory 
pathogens20,24, is often linked to SSEs with suspected airborne transmission.  A series of 
observational and experimental studies has documented the potential for upper respiratory tract 
infections (with a respiratory virus, e.g. rhinovirus or adenovirus) to convert nasal carriers of 
Staphylococcus aureus into highly infectious ‘cloud’ patients, so-called because they are 
surrounded by clouds of aerosolized bacteria25-28.  This mechanism has been proposed to underlie 
some SARS SSEs29—a proposal that is untested, although generation of viral aerosols by a 
patient with SARS has been demonstrated so the potential for airborne spread exists30,31. 
 At the pathogen level, evolution of highly-transmissible pathogen strains is possible, but 
should lead to observable correlations in Z within transmission chains if enough generations of 
uninterrupted transmission are traced closely (rarely the case in any non-experimental system).  
An open question is the extent to which pathogen biology influences the different degrees of 
heterogeneity observed here.   

 Environmental factors have a strong influence on transmission.  Crowded or confined 
settings—such as schools32,33, nightclubs17, markets34, and airplanes23—often lead to multiple 
infections, as can funerals35,36 and hospitals10,37,38 for virulent diseases.  Other important 
environmental factors are the susceptibility of an individual’s contacts, due to age, illness10, or 
lack of (successful) vaccination19,20,39, and the state of medical knowledge, particularly for a novel 
disease such as SARS for which misguided procedures and missed diagnoses are inevitable40.  
The delay before an infectious patient is isolated is an important determinant of individual 
infectiousness41, and is influenced by accuracy of diagnostic criteria, public health resources, 
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severity of symptoms, and comorbid conditions10,38,40.  Imperfect disease control measures can 
increase variation in ν, if transmission is concentrated in a few missed cases or pockets of 
unvaccinated individuals10,20,34,37,42.  We emphasize that all of these host, pathogen and 
environmental factors join to comprise a case’s infectious history, which in turn dictates the 
individual reproductive number ν.  Note that ν is a property of a given individual’s infectious 
history, rather than a fixed property of the individual, because an individual’s infectiousness may 
change with time due to differing circumstances.  
 
 
2.  Methods 

2.1  Candidate models for the offspring distribution 

 The offspring distribution is the probability distribution for the number of secondary 
cases Z caused by each infectious individual.  We modelled the offspring distribution using a 
Poisson process to represent the demographic stochasticity inherent in the transmission process4, 
with intensity ν that could vary to reflect individual variation in infectiousness.  The value of ν 
for a given individual’s infectious history is thus the expected number of secondary cases they 
will cause, i.e. their individual reproductive number.  Note that ν is an expectation and can take 
any positive real value, while Z is necessarily a non-negative integer (0,1,2,3,…).  Owing to the 
influence of circumstance on disease transmission, ν is not necessarily a fixed attribute of each 
individual host, but rather is a property of a particular infectious history for a given host  (i.e. the 
circumstances throughout that host’s infectious period).   

 The offspring distribution is therefore a Poisson mixture43-47, with mixing distribution 
given by the population distribution of ν, i.e. Z~Poisson(ν).  We consider three distinct treatments 
of the individual reproductive number, yielding three candidate models for the offspring 
distribution.  To aid discussion of epidemiological matters, we denote the scale parameter of all 
offspring distributions by R0; the relation to conventional notation is stated below.  (Note that 
throughout this study, we use the basic reproductive number R0 for uncontrolled transmission in 
completely susceptible populations, and the effective reproductive number R when population 
immunity or control measures are present.  When either measure could apply, we use R0 for 
notational clarity.) 

 
The three candidate models for the offspring distribution are: 

1. If individual variation is neglected and the individual reproductive number for all cases is 
assumed to equal the population mean (ν=R0 for all cases), then the offspring distribution 
is Z~Poisson(R0). 

2. In models with constant per capita rates of leaving the infectious state (by recovery or 
death), the infectious period is exponentially distributed.  If the transmission rate is 
assumed to be identical for all individuals, then the individual reproductive number is 
exponentially distributed (ν~exponential(1/R0)).  Using this expectation in the Poisson 
process representing transmission yields a geometric offspring distribution, 
Z~geometric(R0)43-45.  (Note: conventional notation is Z~geometric(p) where p=1/(1+R0).) 

3. To incorporate variation in individual infectious histories (from a range of sources), we 
introduce a more general formulation in which ν follows a gamma distribution with 
dispersion parameter k and mean R0.  As shown in Fig. 2a, this includes ν=R0 and 
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ν~exponential(1/R0) as special cases, and also allows enormous flexibility to fit real-
world complexities (at the expense of an added parameter).  A Poisson process with this 
gamma-distributed intensity yields a negative binomial offspring distribution with 
dispersion parameter k and mean R0, Z~NegB(R0,k)43-45.  (Note: conventional notation is 
Z~NegB(p,k) where ( ) 1

01 −+= kRp .)  When k=1 the NegB(R0,k) distribution reduces 
to Z~geometric(R0), and when k→∞ it reduces to Z~Poisson(R0). 

In all three candidate models, the population mean of the offspring distribution is R0.  The 
variance-to-mean ratio differs significantly, however, equalling 1 for the Poisson distribution, 
1+R0 for the geometric distribution, and 1+R0/k for the negative binomial distribution.  

 
2.2  Data analysis 

The major purpose of our statistical analysis is to assess the empirical evidence for each of 
the three candidate models described above, for a number of disease datasets.  We approach this 
task using two parallel techniques.  In one approach, we apply maximum likelihood methods to 
estimate model parameters, then use information-theoretic model selection to determine which 
model is preferred.  In a second approach, we conduct a test for extra-Poisson variability (using 
the Potthoff-Whittinghill statistic48, related to the variance-to-mean ratio); if the Poisson model is 
deemed unlikely then we estimate the negative binomial dispersion parameter k for the dataset.  
Because the Poisson and geometric models correspond to special values of k, then by estimating 
confidence intervals on our estimate of k we gain insight into the likelihood that the Poisson or 
geometric model is supported by the data.  Summarized results are given in Supplementary Table 
1, and full results are shown in Supplementary Table 2. 

Two types of disease datasets were analysed: those with full distributions of Z and those 
where only the mean value of Z and the proportion of zeros (Z=0 values) are known.  
Descriptions of all outbreaks and issues specific to each dataset are outlined in Section 3.1, 
below.  

When full contact tracing information was available, the dataset consisted of a list of Z 
values for all infected individuals prior to the imposition of control measures.  Some datasets are 
composed of data from several outbreaks merged together, or combined surveillance data for the 
first generation of transmission for many disease introductions.   

In several surveillance datasets only limited information was available.  When the mean 
number of cases caused per index case and proportion of index cases that caused no further 
infections are known, then the negative binomial parameters can be estimated as described below.  
In some instances the total number of cases in subsequent generations of an outbreak was also 
reported, but this information was not used because we could not attribute these cases to specific 
sources of infection. 
 
2.2.1  Parameter estimation and model selection from full datasets 

When full datasets were available, model parameters were estimated by the method of 
maximum likelihood (ML).  For the Poisson, geometric and negative binomial models, the ML 
estimate of the mean of the offspring distribution (i.e. the reproductive number, R0 or R) is simply 
the sample mean49,50.  For the negative binomial distribution, the dispersion parameter k is 
asymptotically orthogonal to the mean and so is estimated independently after substituting the 
ML estimate of the mean into the likelihood expression50,51.   
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Estimation of k from finite samples is a challenging problem and has been the subject of 
considerable research51-56.  This body of work shows that it is better to estimate k indirectly via its 
reciprocal α=1/k, as this avoids discontinuities for homogeneous datasets (i.e. increasing 
homogeneity yields αØ0 instead of kØ¶)51,52,54,55.  Furthermore the sampling distribution for α 
tends to be nearly symmetric52, allowing a more rapid approach to asymptotic normality (see Fig. 
SI-1).  Many studies have employed simulation methods to assess the bias and efficiency of 
various statistical estimators for the dispersion parameter for finite sample sizes, though 
regrettably most studies investigating ML estimates have focused on k¥1 instead of the parameter 
range  of greatest interest here (k<1).  Early work concluded that ML estimation has preferable 
small-sample bias and efficiency properties, and is generally superior (save for its computational 
expense, which is no longer a concern) compared to the method of moments and other methods of 
estimating k50,53.  Recent work shows that ML estimates of k have only minor bias (1-3%) for 
sample sizes N¥20 and k<2 (values of k<1 were not tested but the bias appears quite stable for 
decreasing values; see Fig. 1b of Saha & Paul51).  In all cases where ML estimates of k have been 
tested by simulation, the bias of small-sample estimates has been to overestimate the true value of 
k51,53,55.  Gregory & Woolhouse56 conducted an extensive simulation study of estimating k by the 
method of moments, including applicable parameter ranges (k<1), and found a consistent, larger 
positive bias in k estimates for small sample size . As they noted, the positive bias in k (i.e. 
underestimation of heterogeneity) arises because smaller samples are less likely to include the 
rare extreme values through which the negative binomial distribution manifests its heterogeneity. 

We therefore estimated k by applying ML to α=1/k, and final values were converted back 
into dispersion parameters k because this quantity is more familiar to epidemiologists and 
ecologists. ML estimates based on the full distribution of Z are denoted here by ˆ k mle .  The 
termination tolerance on numerical maximization was set sufficiently small that negligible 
accuracy was lost in inverting the estimates, and direct ML estimates of k matched k=1/α to 
beyond the fourth decimal place except as k rose toward infinity (and hence needed to be 
approximated by a large finite value in the direct estimation).  We performed goodness-of-fit tests 
for the negative binomial model (i.e. the “global model”) using maximum-likelihood parameter 
estimates for each dataset, and in no case were quasi-likelihood adjustments for overdispersed 
data required57.   
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Figure SI-1. Bootstrap sampling distributions for the negative binomial dispersion 
parameter k and its reciprocal α=1/k.  Distributions of maximum-likelihood estimates of k 
and α generated by 10,000 non-parametric resamples of the pneumonic plague dataset (N=74). 
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Having computed the maximum likelihood scores for each dataset, we compared the Poisson, 
geometric and negative binomial models using Akaike’s information criterion (AIC)57: 

( )( ) Kdata- 2|ˆLln2AIC += θ  
where ( )( )data|ˆLln θ  is the log-likelihood maximized over the unknown parameters (θ), given 
the model and the data, and K is the number of parameters estimated in the model.  Because some 
of our datasets are small, we used the modified criterion AICc, which reduces to the conventional 
expression as sample size N becomes larger57: 

( )( ) ( )
1
122|ˆLln2AICc −−

+++=
KN
KKKdata- θ  

We rescaled the AICc by subtracting the minimum score for each dataset, and present the 
resulting values ∆AICc.  We then calculated Akaike weights wi for each of the three candidate 
models: 

( )
( )

.
AICexp

AICexp
3

1
c,2

1

c,2
1

∑
=

∆−

∆−
=

j
j

i
iw  

The Akaike weight wi can be interpreted as the approximate probability that model i is the 
best model of the set of candidate models considered, in the sense of combining accurate 
representation of the information in the data with a parsimonious number of parameters57. 
 
2.2.2  Parameter estimation from mean and proportion of zeros 

When surveillance datasets did not include full information on the distribution of Z, but 
included the total number of disease introductions and the number of these that led to no 
secondary cases, then 0p̂ , the proportion of primary cases for whom Z=0, could be estimated.  If 
the total number of second-generation cases is reported58, then it was divided by the number of 
introductions to estimate 0R̂ .  In the studies on measles in the United States and Canada, data 

were not available to estimate 0R̂  ourselves so data-derived estimates of 0R̂  from the original 
reports were used42,59.  

Given estimates of the mean ( 0R̂ ) and proportion of zeros ( 0p̂ ) of a negative binomial 
distribution, the dispersion parameter k can be estimated by solving the equation 

( ) k
kRp

−
+= ˆ1ˆ 0  numerically50.  We denoted the resulting estimates ˆ k pz .  This estimator is 

known to be less efficient and more biased than the ML estimator50,53, but to ascertain the 
accuracy of this method of estimation for our analyses, we compared ˆ k pz  and ˆ k mle  for several 
outbreaks for which we had full information on Z (Supplementary Fig. 4).  The proportion of 
zeros estimate is quite accurate, particularly for k̂ <1, but is usually slightly higher than ˆ k mle  and 
has a broader confidence interval. 

Because the estimates ˆ k pz were not obtained using ML methods, the AIC approach to 
model selection was not applicable.  Conclusions regarding these datasets were based entirely on 
confidence intervals for k, described below. 
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2.2.3  Testing for deviation from Poisson homogeneity 
 A great deal of research has addressed the statistical question of assessing whether a 

count dataset has significant deviations from a homogeneous Poisson distribution44,47,48.  After 
reviewing the performance of numerous possible test statistics47, we selected the Potthoff-
Whittinghill ‘index of dispersion’ test, which is asymptotically locally most powerful against the 
negative binomial alternative48.  For a dataset X with N elements, this statistic is (N–
1)*var(X)/mean(X) and its asymptotical distribution is chi-squared with N–1 degrees of freedom.  
A p-value is obtained by determining the cumulative density of the chi-squared(N–1) distribution 
to the right of the test statistic, and represents the probability that the observed variance arose by 
chance from a Poisson distribution. 
 
2.2.4  Confidence intervals for k 

Estimation of accurate confidence intervals for the negative binomial dispersion parameter 
k estimated from finite samples is a difficult challenge.  Many applied studies reporting values of 
k do not report confidence intervals60,61; those that do typically report a single measure, often the 
ML sampling variance62.  Because of the recognized difficulty of establishing accurate confidence 
intervals for k, we adopted the conservative approach of applying multiple independent methods, 
from fully non-parametric to fully parametric, and evaluating their results in aggregate.  Because 
the intervals obtained using this suite of methods are very similar, we have confidence in the 
reported intervals as approximate ranges of uncertainty63.  We chose to report 90% confidence 
intervals, since the more extreme values (needed for, say, a 95% confidence interval) are most 
difficult to estimate accurately. 

We estimated 90% CIs for k using the following five methods.  The first three approaches 
require a full dataset (i.e. the full observed distribution of Z), while the latter two require only the 
mean and proportion of zeros.  All full datasets were analysed using all five methods, while 
reduced datasets were analysed only using the latter two.  See Supplementary Table 2 for these 
results. 
 
(i) Non-parametric bootstrap:  Bootstrap datasets were generated by re-sampling with 
replacement from the original data.  For each bootstrap dataset, the ML estimates of 0R̂  and 

k̂1ˆ =α  were determined as described above, generating a bootstrap sampling distribution.  
Confidence intervals were constructed using the bias-corrected percentile method64,65, because 
both parameters are restricted to positive real values and tended to have skewed bootstrap 
distributions for which the median of bootstrap estimates did not equal the parameter estimate 
from the original dataset. (Note that the sampling distribution of α is more symmetric than that of 
k, but bias-correction was employed to remove any skew; see Fig. SI-1).  This method is second 
order asymptotically accurate (i.e. the difference between real and desired coverage is 
asymptotically O(1/N) for sample size N) for even-tailed two-sided intervals66, but bootstrap 
confidence intervals of asymmetric distributions are still prone to errors in coverage65 so the 
displayed intervals are intended as approximate ranges of uncertainty.  We employed 10,000 
resamples with replacement to generate our simulated bootstrap distributions.  Datasets with very 
few non-zero values of Z generated significant proportions of bootstrapped datasets with all zeros.  
Such all-zero datasets contain insufficient information to estimate k̂ , so when 5% or more of 
bootstrapped datasets contained only zero values the bootstrap 90% confidence interval was 
undefined.  
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(ii) Parametric bootstrap:  Bootstrap datasets were generated using a negative binomial random 
number generator (nbinrnd in Matlab (v6.1 R13, MathWorks, Cambridge MA)) using the ML 
parameters estimated from the original data.  This approach eliminates the influence of the 
particular Z values in the original dataset, allowing for a more continuous distribution of Z in the 
bootstrap datasets, but makes a stronger assumption regarding the mechanism generating the 
data64,66.  Confidence intervals were generated exactly as for the non-parametric bootstrap 
datasets. 
 
(iii) Maximum-likelihood sampling variance:  ML parameter estimates have large-sample 
variance given by the inverse of the Fisher information matrix, and thus asymptotically approach 
the Cramer-Rao bound for minimum-variance estimators49.  For the negative binomial dispersion 
parameter k̂ , or its reciprocal α̂ , the asymptotic sampling variance cannot be expressed in 
closed form but is easily calculated numerically50,51; note the relationship 

( ) ).ˆ(1ˆ 4 kVarkVar =α 52  We calculated the large-sample variance for α̂ , denoted 2
α̂σ , and 

estimated the 90% confidence interval for α̂  as [ ]αα σασα ˆ95.0ˆ95.0 ˆ,ˆ zz mlemle +− , where z0.95 is 

the 95th percentile of the standard normal distribution49.  The confidence interval for k̂  was then 
generated by inverting these two endpoints.  
 
(iv) Large-sample variance of ˆ k pz :  The large-sample variance of ˆ k pz  has been derived by 
Anscombe50 using a general moment method.  For all datasets (including the full datasets), this 
quantity was calculated and confidence intervals generated using the approach outlined in method 
3, above. 
 
(v) Binomial sampling variance in 0p̂ :  In our final approach, informal inference on ˆ k pz  was 
performed based on the binomial sampling variability of 0p̂ , the proportion of infectious cases 
that cause no transmission.  Exact 90% confidence intervals on 0p̂  were obtained using the 
method of Clopper and Pearson67; these intervals are the most conservative of many alternative 
binomial confidence intervals, guaranteeing coverage of at least 90% and often considerably more 
due to discreteness of the binomial distribution68.  Utilizing the fact that the asymptotic 
covariance of 0R̂  and k̂  is zero50, the estimate of 0R̂  (by other means) is taken as a given, and 

the confidence interval for k̂  is determined by calculating ˆ k pz  for each endpoint of the 
confidence interval for 0p̂ . 
 
2.2.5  Expected proportions of transmission 

The expected proportion of transmission due to a given proportion of the population, 
plotted in Fig. 1b, was calculated as follows.  First we estimated R0 and k, which specify the pdf 
fν(x) and cdf Fν(x) of the gamma-distribution describing the individual reproductive number ν for 
a given disease and population.  We then calculated the cumulative distribution function for 
transmission of the disease: 
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such that Ftrans(x) is the expected proportion of all transmission due to infectious individuals with 
ν < x.  The expected proportion of transmission due to individuals with ν > x is thus 1-Ftrans(x), 
while the proportion of individuals with ν > x is 1-Fν(x).  These quantities were plotted 
parametrically as a function of x to make Fig. 1b.  Similarly, the expected proportion of 
transmission due to the most infectious 20% of cases, t20, was calculated by finding x20 such that 
1-Fν(x20)=0.20, then t20=1-Ftrans(x20) (see Fig. 1c). 
 
2.3  Superspreading events (SSEs) 

Factors contributing to superspreading events are reviewed in Section 1, above.  Case 
reports corresponding to data in Fig. 1d are summarized in Section 3.2.  The percentile intervals 
in Fig. 1d were generated directly from the Poisson distribution, with reproductive numbers 
drawn from specific studies of the relevant diseases where possible, or otherwise from compiled 
estimates (see Section 3.2).  These latter estimates of R0 are intended to be indicative only, since 
they do not necessarily describe the same population setting or disease strain as the SSEs in 
question. 

Our proposed definition of superspreading events enables prediction of the frequency of 
SSEs, Ψ, for diseases with different degrees of individual variation (Supplementary Fig. 1).    
Once the threshold number of cases Z(99) has been defined for a 99th-percentile SSE under 
effective reproductive number R, then for any k one can calculate from Z~NegB(R,k) the 
proportion of individuals ΨR,k expected to generate Z>Z(99).  (Because this requires estimates of R 
and k, ‘real-time’ estimation of Ψ for an outbreak in progress is subject to any biases in the 
available data.  It is possible that SSEs will be over-represented in available datasets precisely 
because of their important role in early survival of disease invasions when significant individual 
variation exists.)  In a homogeneous population (k→∞), ΨR,∞≤0.01 by definition (where the less-
than arises because the Poisson distribution is discrete; see below).  When heterogeneity is 
accounted for, ΨR,k>ΨR,∞ and varies strongly with both R and k, peaking between k=0.1 and k=1 
for the low R values of interest for emerging diseases.  Because the variance-to-mean ratio is 
fixed at 1 for the Poisson distribution but increases linearly with R for the NB model, for 
moderate k values ΨR,k increases strongly with R as the relative density of Z>Z(99) increases.  Note 
that the proportion of 99th-percentile SSEs, ΨPoisson, is often less than 1%, because Poisson(R) is a 
discrete distribution and for arbitrary R there is unlikely to be an integer Z(99) such that 
FPoisson(R)(Z(99)) equals 0.99 exactly.  As a result, the proportion of cases causing SSEs under the 
negative binomial model, ΨR,k, may approach some value less than 0.01 as kØ¶.  In plotting 
Supplementary Fig. 1, we chose values of R such that ΨPoisson=ΨR,∞=0.01 and all plotted lines 
approached the same asymptotic value.  These values were computed simply by examining 
Poisson cdf’s for different R.  Precise values of R in Supplementary Fig. 1 are 0.148, 0.436, 
1.279, 2.330, 3.507, 6.099, 10.345, and 20.323.  Note that this effect of the discreteness of the 
Poisson distribution, while a nuisance in making plots, has little practical impact in this context 
because most diseases have k<5 (Supplementary Table 1). 
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2.4  Dynamic modelling 

2.4.1  Branching process model and analysis 
We studied the properties of stochastic disease invasions using a single-type branching 

process model, which allowed us to incorporate individual heterogeneity in infectiousness by 
varying the offspring distribution.  This model of invasion assumes that the supply of susceptible 
individuals is not limiting for the outbreak, and that the numbers of secondary cases (‘offspring’) 
caused by each infectious individual are independent and identically distributed.  Branching 
process models are summarized in depth elsewhere69, as are their particular applications to 
modelling disease invasion4. 
 The heart of a branching process model is the offspring distribution, which describes the 
probability distribution of the number of new cases Z caused by each infectious individual, i.e. it 
sets pk=Pr(Z=k) for k=0,1,2,3,… . Analysis of branching process models centers on the 
probability generating function (pgf) of the offspring distribution, denoted g(s): 

k

k
k spsg ∑

∞

=

=
0

)( ,  |s|≤1 

Two important properties of the epidemic process follow directly from g(s).  The basic 
reproductive number, R0, is by definition the mean value of Z, and is equal to g′(1).  The 
probability that an infectious individual will cause no secondary infections, p0=Pr(Z=0), is g(0).  
Thus a great deal can be learned about an outbreak from the y-intercept of the pgf and its slope at 
s=1. 

The nth iterate of the pgf, gn(s), is the pgf of Zn, the number of cases in the nth generation, 
and is defined as follows: g0(s)=s, g1(s)=g(s), and gn+1(s)=g(gn(s)) for n=1,2,3,… 69.  The 
probability that the epidemic has gone extinct by the nth generation is thus gn(0).  We denote the 
probability of extinction as nØ∞ by q, then q is a solution to the equation q=g(q) (from 
gn+1(s)=g(gn(s)) with nØ∞), which from monotonicity and convexity of g(s) has at most one 
solution on the interval (0,1)69.  When R0≤1, the only solution to q=g(q) is q=1 and disease 
extinction is certain; when R0>1, there is a unique positive solution less than one69. 

Finally, the pgf for the total number of individuals infected in all generations of a minor 
outbreak (i.e. one that goes extinct) is defined implicitly as G(s)=sg(G(s))69.  The expected size of 
a minor outbreak is then G′ (1), and can be calculated numerically for a given g(s). 

For our treatment of the transmission process, we assume that each individual’s infectious 
history has an associated individual reproductive number ν, drawn from some distribution with 
pdf fv(u).  Demographic stochasticity in transmission is then represented by a Poisson process, as 
is standard in branching process treatments of epidemics4.  This yields the following pgf for a 
Poisson distribution with mean ν distributed as fv(u): 

( )∫
∞

−−=
0

1 )()( duufesg su
ν  

If ν is a constant, R0, then the pgf is:  
( )sResg −−= 10)(  

If ν is exponentially distributed with mean R0, the resulting offspring distribution is geometric 
with mean R0

43-45 and pgf:   
 ( )( ) 1

0 11)( −−+= sRsg  
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If ν is gamma distributed, with mean R0 and dispersion parameter k, the resulting offspring 
distribution is negative binomial, also with mean R0 and dispersion parameter k43-45, with pgf:   

( )
k

s
k
R

sg
−







 −+= 11)( 0  

This expression was applied in all of the general branching process results shown above to derive 
our results.  The expression q=g(q) was solved numerically to generate Fig. 2b and 
Supplementary Fig. 2b, showing the dependence of the extinction probability on R0 and k.  The 
negative binomial pgf itself is plotted in Supplementary Fig. 2a, showing how the probability of 
infecting zero others (p0) increases sharply with k for a given R0.  The expected size of minor 
outbreaks (Supplementary Fig. 2c) was plotted by solving G′ (1) numerically for a range of values 
of R0 and k.  The probability of extinction in the nth generation (Supplementary Fig. 2d) was 
calculated using gn(0)−gn−1(0).  These numerical solutions match the averaged output of many 
simulations precisely, for R0 above and below zero, and for kØ0 and kØ∞.   
 
2.4.2  Branching process simulations 

To assess the growth rate of major outbreaks, a branching process epidemic was 
implemented by simulation, beginning with a single infectious individual (Fig. 2c, Supplementary 
Figs. 2e,f).  For each infectious individual, the individual reproductive number ν was drawn from 
a gamma distribution with chosen values of R0 and k, using the gamrnd function in Matlab (v6.1 
R13, MathWorks, Cambridge MA) adapted to allow non-integer k.  The number of secondary 
cases Z caused by that individual was then determined by drawing a Poisson random variable 
with mean ν, using the Matlab function poissrnd.  Each individual was infectious for only one 
generation, and the total number of infected individuals in each generation was summed.  The 
first generation to reach 100 cases was used as an arbitrary benchmark of epidemic growth rate. 
 
2.5  Analysis of disease control 

2.5.1  Control policies—theoretical framework 
We consider an epidemic that has a natural (i.e. uncontrolled) offspring distribution 

Z~NegB(R0,k), from which we know the probability of infecting zero others is p0=(1+R0/k)−k.  
Under the population-wide control policy, every individual’s infectiousness is reduced by a 
factor c so their expected number of secondary cases is reduced from ν to pop

cν =(1-c)ν and the 

realized number is pop
cZ ~Poisson((1-c)ν).  The reproductive number under control, pop

cR  
(denoted R in the main text, for simplicity), equals (1−c)R0.  If uncontrolled individual 
reproductive numbers are gamma-distributed, ν~gamma(R0,k), then only the scale parameter of 
the resulting negative binomial distribution is affected by population-wide control (the dispersion 
parameter k is unchanged) and pop

cZ ~NegB((1−c)R0,k).  The variance-to-mean ratio of pop
cZ  is 

1+(1−c)R/k, and decreases monotonically as control effort increases. 
 

Under individual-specific control, each infected individual is controlled perfectly (such 
that they cause zero secondary infections) with probability c.  Imposition of individual-specific 
control influences transmission only for the fraction 1−p0 of individuals whose natural Z value is 
greater than zero—of these a fraction c have ind

cZ =0, while the remaining fraction 1−c are 
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unaffected and have ind
cZ =Z.  Under an individual-specific control policy, therefore, the 

proportion of cases causing zero infections is ( )00
ind
0 1 pcpp −+=  and the population mean 

( ) ( )ind
0

1 1

1 1Pr(case  not controlled) 1 1
N N

c i i
i i

R Z i c Z c R
N N= =

= = − = −∑ ∑ .  The exact distribution 

of ind
cZ  is defined by Pr( ind

cZ =0)= ind
0p  and Pr( ind

cZ =j)=(1−c)Pr(Z=j) for all j>0, i.e. the 

distribution of ind
cZ  has an expanded zero class relative to Z, while for non-zero values its density 

is simply reduced by a factor (1−c) from Z~NegB(R0,k).  Hence, the offspring distribution under 
individual-specific control has pgf: 

( ) ( )0
ind ( ) 1 1 1

kRg s c c s
k

−
 = + − + − 
 

 

Applying a general result from the theory of branching processes69, the variance-to-mean 

ratio of ind
cZ  can be calculated from ( ) ( ) ( )( )( ) ( )2

ind ind ind ind1 1 1 1g g g g′′ ′ ′ ′+ −  and shown to equal 

1+R0/k+cR0, which increases monotonically as c increases. 
For direct comparison with other offspring distributions in our analysis, this composite 

distribution under individual-specific control can be approximated by a new negative binomial 
distribution, NBind,

cZ ~NegB( ind
cR , ind

ck ) where ind
cR  is given above and ind

ck  is estimated using 

the proportion of zeros method as the solution to ( ) ( )
ind

ind ind ind
0 0 01 1 ck

c cp p c p R k
−

= + − = + .  

The approximated dispersion parameter ind
ck  decreases monotonically as control effort c increases 

(Fig. SI-2a).  This approximation yields better than 95% overlap with the exact distribution for 
k§1, and better than 85% overlap for almost all of parameter space (Fig. SI-2b).  (The proportion 

of overlap is calculated as ( ) ( ) 2PrPr1
0

NBind,ind 






 =−=− ∑
∞

=i
cc iZiZ , which scales from 0 to 1 

as the two distributions go from completely non-overlapping to identical.)  The approximation 
approaches exactness for cØ0 and cØ1, and is least accurate for large values of k because it is 
unable to mimic the bimodal distribution of ind

cZ  (Fig. SI-2c). 
 
2.5.2  Relative efficacy of control policies 

For population-wide control, with all individuals’ transmission reduced by a factor c, the 
offspring distribution is pop

cZ ~NegB((1−c)R0,k) and has pgf: 

( ) ( )0
pop ( ) 1 1 1 .

kRg s c s
k

−
 = + − − 
 

 

For individual-specific control, with a random proportion c of individuals controlled 
absolutely, the exact pgf (i.e. not the negative binomial approximation) is as given above: 

( ) ( )0
ind ( ) 1 1 1 .

kRg s c c s
k

−
 = + − + − 
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Figure SI-2. Negative binomial approximation for individual-specific control.  (a) The 
approximated dispersion parameter ind

ck  decreases monotonically as control effort c increases.  
Curves depict uncontrolled outbreaks with k=1000 (blue), k=1 (green), and k=0.1 (red), for R0=1 
(solid), R0=3 (dotted), and R0=10 (dashed). (b) Accuracy of the approximation whereby the 
offspring distribution under random individual-specific control is represented by a negative 
binomial distribution, NBind,

cZ ~NegB( ind
cR , ind

ck ).  Contours show the proportion of overlap 
between the exact and approximated offspring distributions, calculated as described in the text. 
(c) Exact and approximated negative binomial offspring distributions under individual-specific 
control for R0=3.  From bottom to top, five curves for both the exact and approximate 
distributions show k=0.1, 0.5, 1, 3, and 10.  

 
 
Claim: For all c œ (0,1-1/R0), the probability of extinction is always greater under individual-
specific control than under population-wide control. 
 

Proof of claim: Define ( )( ) k

k
R sxxG

−
−+= 11)( 0  where X is a Bernoulli random variable with a 

probability 1−c of success.  Since G is a convex function, Jensen’s inequality implies that 
( )( ) ( )( )pop ind( ) ( )g s G E X E G X g s= < =  (*)

whenever c œ (0,1) and s œ [0,1).  Furthermore, for the nth iterates of the pgf we have from (*) 
that 

pop, ind,(0) (0)n ng g<  
so the probability of disease extinction by the nth generation is always greater under individual-
specific control. Thus if c œ (0,1-1/R0), the probability of ultimate extinction under individual-
specific control is greater than that under population-wide control, i.e. popind qq > . If c > 
1-1/R0, then pop ind 1c cR R= <  so that .1popind == qq  That is, the threshold control effort required 
to assure disease extinction is c = 1-1/R0 (provided individual-specific control is applied to 
randomly-chosen individuals).  
 

To consider the efficacy of control policies targeting the more infectious individuals in a 
population, we consider a general branching process whose pgf is given by 
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( ) ( ) ( )∫
∞

−−=
0

1 duufesg su
ν  

where fv(u) is the pdf of the individual reproductive number ν for the outbreak in question. 
 
For a control strategy C : [0,∞) → [0,1] in which the probability of absolutely controlling a case 
with individual reproductive number ν is C(ν), the pgf of the branching process becomes 

( ) ( ) ( )( ) ( )∫
∞

−− −+=
0

1 1 duufuCecsg su
C ν  

where 

( ) ( )∫
∞

=
0

duufuCc ν  

is the fraction of individuals controlled on average. For example, random individual-specific 
control corresponds to choosing C(ν)=c for all ν.  Maximally-targeted control, in which the top c 
× 100% of infectious individuals are controlled absolutely, corresponds to choosing 

( )




≥
<

=
c

cC
νν
νν

ν
  if1
  if0

 

where νc satisfies ( ) .cduuf
c

=∫
∞

ν
ν  

 
Note that when ν is gamma-distributed with mean R0 and dispersion parameter k, the pgf under 
maximally-targeted control is 

( ) ( ) ( )( )
( ) 








Γ

−+Γ−





 −++=

−

k
sRkks

k
Rcsg c

k 1,111 00
max

ν  

where ( ) ∫
∞

−−=Γ
b

tk dtetbk 1,  and ( ) ( ).0,kk Γ=Γ  

 
For any distribution of ν represented by fv(u), we can make the following claim: 

Claim: Let C1 and C2 be two control strategies that satisfy ( ) ( ) cduufuCi =∫
∞

0
ν  and 

( ) ( ) ( ) ( )∫∫
∞∞

>
xx

duufuCduufuC νν 21  (**)

for all x > 0, so that C1 targets higher-ν individuals to a greater degree.  Then the reproductive 
number under strategy 1 ( 1C

cR ) is less than that under strategy 2 ( 2C
cR ). Moreover, if 2C

cR >1, 
then the probability of extinction is greater under strategy 1. 
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Proof of Claim: The claim 21 C
c

C
c RR <  is equivalent to ( ) ( ).11

21 CC gg ′<′   Recall that if X and Y 
are positive random variables such that P(X > x) > P(Y > x) for all x > 0, then E(X)>E(Y)3. Define 
Xi to be the positive random variable with the pdf 

( )( ) ( )ufuC
c i ν−

−
1

1
1  

for i=1,2.  By (**) we have 

( )( ) ( ) ( )( ) ( ) )(1
1

11
1

1)( 1122 xXPduufuC
c

duufuC
c

xXP
xx

>=−
−

>−
−

=> ∫∫
∞∞

νν  

for all x > 0.  Hence 
( ) ( ) ( ) ( ) ).1(11)1(

12 12 CC gXEcXEcg ′=−>−=′  
The second assertion of the claim is equivalent to the statement that )()(

21
sgsg CC > for all s œ 

[0,1).  To prove this, define Yi=exp(-Xi(1-s)). Since exp(-x(1-s)) is a decreasing function of x 
for s œ [0,1) and P(X2>x)>P(X1>x) for all x > 0, we have P(Y1>x)>P(Y2>x) for all x>0. Hence, 

( ) ( ) ( ) ( ) ),(11)(
21 21 sgYEccYEccsg CC =−+>−+=  and as argued above we have 

)0()0( ,, 21 nCnC gg >  for all generations n and therefore .21 CC qq >  

 
To see the utility of this claim, let us consider two control strategies C1 and C2 that control 

two portions of the population in different ways. Suppose strategy Ci controls the less-infectious 
portion of the population (i.e. *νν < ) with probability ai and controls the more-infectious portion 
of the population (i.e. *νν ≥ ) with probability bi.  In other words 

( )




≥
<

= *

*

  if
  if

νν
ννν

i

i
i b

a
C  

Moreover, let us assume that both strategies control the same fraction of individuals, i.e. 

( ) ( ) cduufuCi =∫
∞

0
ν  for i=1,2.  Suppose that strategy 1 targets more-infectious individuals to a 

greater degree than strategy 2, i.e. b1> b2 and thus a1<a2.  This is a generalized formulation of the 
targeted control scenario discussed in the main text (Figs. 3c,d), for which strategy 1 defines *ν  

as the solution to ( ) 80.0
*

0

=∫
ν

ν duuf  and takes b2=4×a2, whereas strategy 2 is non-targeted 

individual-specific control with a2=b2=c.  For *νν ≥ : 

( ) ( ) ( )

( ) ( ) ( )∫∫

∫∫
∞∞

∞∞

=>

=

ν
ν

ν
ν

ν
ν

ν
ν

duufuCduufb

duufbduufuC
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11

 

and for *νν < : 
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Condition (**) is fulfilled, so 21 C
c

C
c RR <  and ,21 CC qq >  corroborating the simulation results for 

targeted control (Figs. 3c,d; Supplementary Figs. 3c,d). 
 

In general, the more a control policy targets the more-infectious individuals, the higher the 
probability of disease extinction and the slower the growth rate of an outbreak in the event of 
non-extinction.  For any individual-specific control program that targets more-infectious 
individuals more than random (denoted by subscript ‘tar’), then for a given control effort c œ 
(0,1) we have 

tar ind pop( ) ( ) ( )g s g s g s> >  
for all s œ [0,1), so targeted individual-specific control is always more effective than random 
individual-specific control, which in turn is always better than population-wide control. 
 
2.5.3  Control policies—simulations  

To simulate the effect of different control policies (Figs. 3c,d, Supplementary Figs. 3c,d), 
the branching process simulation from Fig. 2c (described above) was adapted.  For population-
wide control, every infected case’s individual reproductive number was reduced to (1-c)ν before 
a Poisson random variate was drawn to determine the number of infections caused.  For random 
individual-specific control, every infected case had probability c of having ν reduced to zero 
before the Poisson random variate was drawn.  For targeted individual-specific control, the total 
proportion of the population subject to control was c, but the probability of control for a top-20% 
individual was four times greater than that for a bottom-80% individual, e.g. Pr(control, top-
20%)=1/4 and Pr(control, bottom-80%)=1/16, yielding Pr(control, overall)=1/10.  Under this 
four-fold targeting, equal effort (in terms of total numbers controlled) is expended on top-20% 
and bottom-80% individuals.  

Targeted control was simulated as follows.  For each combination of R0 and k, the cutoff 
value of ν dividing top-20% from bottom-80% infectiousness was established from the cdf of ν.  
During the simulation, after a value of ν was drawn from the gamma(R0,k) distribution for each 
infected individual, they were assigned to the top-20% or bottom-80% categories. For individuals 
in either category, a uniform random variate on [ ]0,1  was drawn, and if it was less than the 
probability of control for that category then that individual’s value of ν was reset to zero.  The 
realized number of secondary infections Zc was then generated by drawing a Poisson random 
variate with mean ν.   

For the simulations shown in Fig. 3c, control was initiated in the second generation (i.e. the 
index case was not subject to control), representing a delay in recognition of the outbreak.  
Containment of an outbreak was defined as preventing it from growing to the point of a 
generation with 100 cases.  Since a branching process that escapes control will grow without 
bound, results were not sensitive to this arbitrary threshold.  The relative effect of targeted control 
(Fig. 3d) was computed as follows.  The uncontrolled probability of a major outbreak for the 
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given R0 and k was computed as 1−Pr(containment|0% control).  The contribution of control 
efforts to containment was then calculated as:  

Contrib(control policy) = Pr(containment|control policy)−Pr(containment|0% control). 

The relative effect of targeted control, plotted in Fig. 3d, was then: 

Relative effect = Contrib(targeted indiv. control)/Contrib(random indiv. control). 

This quantity equals 1 for kØ¶, since targeting has no effect on a homogeneous population, but 
is greater than 1 for all finite values of k. 
 
 
3.  Data 

3.1  Notes on outbreak and surveillance datasets 

3.1.1  SARS, Singapore 200334 
This dataset describes the progression of SARS in Singapore, beginning with the index 

case who imported the infection from Hong Kong.  The first case had onset of symptoms on Feb 
25, 2003.  The government was notified of an unusual cluster of pneumonia cases on March 6, 
and again on March 14 for a cluster of six persons, including two healthcare workers (HCWs), 
with atypical pneumonia.  A case in the third generation had onset of symptoms on March 12, ten 
days before full control measures were instituted.  In the week of March 11, the serial interval 
(time from symptom onset of source case to symptom onset of secondary case) for SARS in 
Singapore had a median of 6 days (interquartile range, 4-9 days)41.  Centralized control measures 
were imposed on March 22, and tightened successively on March 24 and April 9, so for our 
analysis we combined the first three generations of transmission into one dataset representing 
spread prior to control (N=57).  Transmission data from the fourth through seventh generations 
were pooled to create the dataset under control measures (N=114).  Control measures imposed 
during this period included use of isolation and full contact precautions with all identified SARS 
patients, twice-daily screening of HCWs for fever, limitation of hospital visitors, and later the 
shutdown of a vegetable market where a SSE that occurred after control had been initiated34.  In 
the total Singapore dataset including seven generations of transmission and 201 probable SARS 
cases, 22 cases were not linked to the transmission chain due to translocation from other SARS-
affected regions or poorly-defined contact history.   

Note that our maximum-likelihood estimate of R0 for the first three generations of SARS 
spread in Singapore (1.63; 90% CI (0.54,2.65)) is somewhat lower than other estimates for SARS 
in Singapore (3.1; 95% CI (2.3,4.0))70, though confidence intervals overlap.  This may be because 
our dataset excludes unlinked cases, or because we include the period between the WHO’s global 
alert on SARS (March 12) and the imposition of centralized control measures (March 22), during 
which time transmission may have been reduced by informal changes of behavior or isolation of 
specific patients.  Analysis of a dataset including only the first two generations of transmission in 
Singapore (N=22) yields ˆ R 0,mle =2.55 (90% CI (0.50,4.50)) and ˆ k mle =0.21 (90% CI (0.15,∞)). 
 
3.1.2  SARS, Beijing 200310 

This dataset describes a hospital outbreak of SARS in the period before SARS was 
recognized in Beijing. The index case was an elderly woman hospitalized for diabetes, who 
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caught SARS while a patient in the hospital, and directly infected 33 others.  These second-
generation cases included patients and visitors, and transmission by the second generation 
occurred in the hospital (to patients and visitors), in homes, and in a workplace.  The hospital had 
not implemented isolation or quarantine procedures during the second generation’s infectious 
period.  Later in the outbreak administrative controls reduced contact rates, but infection control 
measures (masks, gloves, etc.) and respiratory isolation were never in place.  We regard the first 
and second generations of spread as a natural experiment in SARS nosocomial transmission.  To 
diminish concern of selection bias (i.e. that this outbreak occurred, and was traced and reported, 
because it began with a superspreading event), we have removed the index case (Z=33) from our 
main analysis, and used only the Z values from the second generation cases (N=33) to calculate 
the values in Supplementary Table 1.  Analysis including the index case yields a higher estimate 
of R0 and more highly overdispersed distribution for ν ( ˆ R 0,mle =1.88, 90%CI (0.41,3.32); 
ˆ k mle =0.12, 90%CI (0.078,0.42); see Supplementary Table 2), as expected given the addition of an 

extreme SSE.  The dataset under control was comprised of data from the third and fourth 
generations of cases (N=43), after the hospital’s imposition of limits on visitors and social 
contacts. 
 
3.1.3  Measles, US 1997-199959 

In this summary of measles elimination efforts in the United States, 165 separate chains of 
measles transmission were identified (of which 107 were classified as importations).  122 
outbreaks consisted of a single case with no secondary transmission (yielding an estimate of 
p0=122/165).  Insufficient data were reported to estimate the effective reproductive number R 
directly, but estimation of R was a major goal of the source paper so we used their estimate and 
95% confidence interval.  These estimates of R were derived from three approaches, all based on 
the assumption that Z~Poisson(R).  Our analysis shows that the negative binomial offspring 
distribution is strongly favoured by AICc model selection, but it is not clear what impact this 
would have on estimation of R using the methods described.  We used the broadest confidence 
interval reported to account for this uncertainty.  Vaccination levels in the US are reported to be 
above 90% in school-aged children71, but are possibly lower in other populations. 
 
3.1.4  Measles, Canada 1998-200142 

As for the US measles dataset, this is routine surveillance data tracking progress on 
elimination of measles from Canada. 49 outbreaks were reported, of which 35 had only one case.  
Again we were unable to estimate R directly, and took estimates and confidence intervals (based 
on Z~Poisson(R)) from the source paper.  The vaccination level in the general population is 
reported to be 95-100%.  The authors raise the interesting point that long chains of transmission 
have occurred exclusively in religious communities that actively resist immunization, suggesting 
that an important determinant of the individual reproductive number ν in this context is the 
susceptibility of one’s contacts.  
 
3.1.5  Smallpox (Variola major), Europe 1958-197320, p. 1077 

This dataset is a summary of smallpox importations into Europe from 1958-1973, and thus 
combines data collected over a long time period in many countries, probably with varying degrees 
of smallpox vaccination.  Two outbreaks were excluded from the analysis, because one of them 
had three primary cases and the other had no primary case (infection was apparently transmitted 
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on a carpet).  The remaining outbreaks each had a single index case, and the number of infections 
in the first indigenous generation (i.e. cases within Europe) was taken as the Z value for each 
index case.  Information on later generations is tabulated in the source material, but was excluded 
from this analysis because it was unclear if and when control was imposed in each outbreak, and 
there is no way to divide the total number of cases in the second indigenous generation among the 
possible source cases in the first indigenous generation.   
 
3.1.6  Smallpox (Variola major), Benin 196772 

A village-based outbreak occurred in Benin (formerly Dahomey) in 1967.  The existence of 
the outbreak was concealed from authorities for three months, after which a vaccination team 
arrived but is suspected not to have affected the natural die-out of the outbreak.  Contact tracing 
was by recollection of the villagers and some links are uncertain.  Vaccination scar rates were 
<20% among children, and >70% among adults.  Transmission was predominantly by intimate 
contacts within households, rather than via frequent casual contacts among villagers.  Limited 
control measures were imposed by the villagers, but were judged by the authors of the report to 
have had little effect on transmission so we have not divided the dataset. 
 
3.1.7  Smallpox (Variola major), West Pakistan 1968-197058 

This is surveillance data from 47 outbreaks in rural West Pakistan, focusing on 
transmission within compounds inhabited by extended families.  Of 47 outbreaks, 26 led to 
secondary transmission, with a total of 70 second-generation cases.  Since all compound residents 
were in reasonably close contact, generations of cases were assigned based on the interval 
between exposure to the index case and onset of illness; for second generation cases this interval 
was 9-21 days.  The population is reported to be relatively homogeneous.  There was no isolation 
of contacts from cases, and vaccination is reported to have “played a minor role”, though it was 
also observed that previously-vaccinated index cases tended to be less infectious.  Severe illness 
was associated with higher infectiousness in this study.  A similar study in East Pakistan in 1967 
reported 30 smallpox outbreaks, with R~2.2 (stated verbally in the paper) and p0=13/30, yielding 
an estimate of ˆ k pz =0.4973. 
 
3.1.8  Smallpox (Variola major), Kuwait 196737 

In this outbreak, smallpox was suspected relatively quickly and control measures were 
imposed rapidly in the affected hospital.  One unrecognized case had been transferred to another 
hospital, however, and initiated further spread there before the disease was recognized and control 
was imposed.  The outbreak was stopped by this expanded control effort.  The background level 
of vaccination is not reported, but Kuwait had been free of endemic smallpox for a decade at the 
time of the outbreak.  Control measures included intensive surveillance of hospitals suspected to 
be infected, with vaccination of all patients.  Household contacts of infected individuals were 
vaccinated and placed under surveillance, and a mass vaccination campaign was initiated that 
covered 80% of the total population of Kuwait by the midway point of the outbreak (i.e. the date 
by which symptoms had appeared for roughly half of all cases). 
 
3.1.9  Smallpox (Variola minor), England 196674 

This outbreak of Variola minor, the less common and less severe form of smallpox, was 
initiated by a laboratory release in Birmingham, England.  Because smallpox had been eliminated 
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from England for decades, the outbreak went unsuspected until a case in the fourth generation of 
transmission was diagnosed and control efforts were initiated.  Thorough investigations were 
conducted by British and US experts, but the results seem to have been published only as an 
appendix to a parliamentary inquiry into a 1978 release of smallpox from the same laboratory in 
Birmingham74.  The contact tracing dataset is quite complete, though there were several cases for 
whom a source of infection was not established.  We have excluded the latter from our analysis.  
Vaccination levels in the general population were roughly 60%20, p. 1071. 
 
3.1.10  Monkeypox, Zaire 1980-198475,76  

From 1980-1984, intensive surveillance and epidemiologic investigations were carried out 
in Zaire to monitor the risk of monkeypox emergence into the niche left empty by the recent 
eradication of smallpox.  147 monkeypox cases were judged to be primary cases infected by an 
animal source.  These data are tabulated in several publications, with the  greatest detail shown in 
Jezek et al75, who break down each outbreak by number of secondary cases per index case (Z) for 
each generation.  In our analysis, we used the data for the first generation of human-to-human 
transmission only, to minimize the influence of control measures.  Scars from smallpox 
vaccination (which is cross-protective for monkeypox) were seen on 68% of investigated 
contacts11, p. 99, but concern was expressed that vaccine protection may have been waning.  
Occasional instances of subclinical infection were reported, raising the possibility that these 
transmission figures are an underestimate11. 
 
3.1.11  Pneumonic plague (Yersinia pestis), 6 outbreaks 1907-199377 

Datasets from six outbreaks of pneumonic plague (Yersinia pestis) were compiled by Gani 
& Leach for their excellent recent analysis of the transmission and control of plague outbreaks.  
They employ an approach similar to ours, comparing Poisson and geometric models for the 
offspring distribution with aggregated data on Z (for all six datasets, before control measures), 
and conclude that the geometric distribution provides a superior fit.  (Note that our analysis, while 
including the more flexible negative binomial distribution as a candidate model, also selected the 
geometric model as the best combination of accuracy and parsimony in fitting the aggregated data 
(Supplementary Table 1).)   Because several of the source reports were published in inaccessible 
or foreign-language publications, we contacted Dr. Raymond Gani directly and he kindly 
provided the raw data from their analyses.  We based our analysis of pneumonic plague on these 
data, with further reference to the source report for the Mukden outbreak which we analysed more 
closely in our work on control measures78.  Mukden is a city in Manchuria, China, which 
experienced a pneumonic plague outbreak in 1946 with 12 cases before control measures and 27 
cases after the advent of control.  Control measures included isolation and quarantine (in a 
suburban area) of all patients and contacts, disinfection and locking of infected houses, and 
wearing of masks required for all contacts and advised for the general population.   
 
3.1.12  Hantavirus (Andes virus), Argentina 199679 

This outbreak is the first reported instance of human-to-human transmission of a 
hantavirus, and is perhaps representative of a zoonotic pathogen beginning to adapt to a human 
host.  It is definitely an anomalous pattern for hantavirus, as human-to-human transmission has 
not been reported elsewhere despite intensive surveillance.  Contact tracing for this outbreak was 
imprecise, in part because several of the infected individuals had contact with more than one 
earlier case.  The dataset of Z values analysed was drawn from a diagrammed transmission chain 
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and text descriptions in the outbreak report.  In instances where the source of transmission was 
vague (i.e. transmission lines to two source cases in the published transmission chain), we 
adopted the conservative policy of dividing the secondary cases evenly between the possible 
sources in making our estimates of ˆ R 0,mle  and ˆ k mle .  The confidence intervals reported in 
Supplementary Table 1 include the upper and lower bounds of 90% confidence intervals 
computed for all alternative assumptions regarding these vaguely attributed cases.  There is no 
mention of control measures in the outbreak report, possibly because human-to-human 
transmission was not thought to be a threat. 
 
3.1.13  Ebola Hemorrhagic Fever, Uganda 200080 

These data come from a traced portion of a large outbreak (425 presumptive cases) from 
Aug 2000 to Jan 2001.  The study methodology was retrospective contact tracing, with the stated 
goal of determining the original “primary” cases of the outbreak (i.e. those who had acquired 
infection directly from the zoonotic reservoir).  Cases (or their next of kin) were asked to identify 
persons from whom they had probably acquired the disease, who were in turn asked to identify 
who had infected them.  Primary cases were defined as those whose sources of infection could not 
be identified.  Prospective contact tracing was conducted to the extent that lists of contacts of 
identified cases (information that was “routinely collected”) were matched with a list of reported 
cases.  This data collection technique may bias the dataset toward surviving chains of 
transmission, since these are the ones that led to the later-generation cases from which contact 
tracing began.  The effort at prospective contact tracing would have mitigated this to some extent, 
but the level of tracing effort was certainly lower than for the retrospective work.  The resulting 
dataset is conspicuously low in Z=0 entries, just as we would expect for a methodology that is 
biased against detecting chains that have died out.  Accordingly, we believe the results in 
Supplementary Table 1 should be interpreted with caution, and have marked them as such. 
 
3.1.14  Rubella, Hawaii 197024  

In this outbreak, an army recruit returned to Hawaii from the US mainland for the 
Christmas holidays.  He imported rubella, and proceeded to infect “every identified susceptible 
contact he had during the 72-hour period of his prodromal illness”24.  His extreme infectiousness 
may have been linked to a persistent nonproductive cough linked to an earlier (separate) 
respiratory illness.  The great majority of secondary cases did not cause further transmission; 
there was only one other infection event reported in the outbreak.  Several cases were not 
epidemiologically linked to any source of transmission, and were omitted from the analysis.  This 
outbreak is almost certainly exceptional in the extreme infectiousness of the index case, and the 
small number of transmitting individuals (i.e. only two cases had Z > 0) prevented reliable 
estimation of model parameters.  As a consequence, we do not include results from this dataset in 
the main text or Supplementary Table 1, but show them in Supplementary Table 2 because of the 
interesting discussion surrounding this outbreak. 

The authors of the original report conclude that highly heterogeneous infectiousness is 
necessary to explain observed patterns of rubella epidemiology in Hawaii.  In particular, they 
posit that “During an uncomplicated rubella infection the average individual may have minimal 
contagious potential”, while “Other persons may have a substantially greater potential for 
spread”.  Proposed factors influencing the potential for spread by individuals were age, sex, and 
coexisting or previous respiratory infections (the latter factor supported by unpublished evidence 
from military camps).  “Spreader to spreader” contact is proposed to be necessary for sustained 
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rubella transmission in a population, explaining why extended rubella outbreaks are most often 
observed in large, crowded population groups.  The authors conclude that the proposed individual 
variation in infectiousness, combined with the sparse population distribution of Hawaii in the 
1960s, could explain “why the highly susceptible population of Hawaii can encounter dozens and 
perhaps hundreds of rubella introductions each year without resulting in a full-scale epidemic”.  
This qualitative hypothesis is highly similar to the model-based conclusions reached in our study. 
  
3.2  Survey of superspreading events (SSEs) 

To demonstrate the universality of the superspreading phenomenon, and to identify 
recurrent themes in field reports of superspreading events, we have compiled a list of 
superspreading events, their index cases, and the circumstances surrounding them.  This list is not 
intended to be comprehensive, but rather is a survey of the epidemiological literature on directly-
transmitted infections.  This list was the basis for Fig. 1d in the main text.  Also required for Fig. 
1d were estimates of reproductive numbers for the directly-transmitted diseases shown.  These 
were drawn from detailed studies where available, or else estimated from published ranges of 
values.  For some diseases, various levels of population immunity (due to previous natural spread 
or vaccination) may have been present for the different SSEs depicted; because these levels 
varied among settings and often were unknown, we adopted the most conservative approach of 
using estimates of basic reproductive numbers in Figure 1d.  R0 estimates and source references 
are as follows: monkeypox, R0=0.32 (Supplementary Table 1); Ebola hemorrhagic fever, 
R0=1.8381; SARS, R0=382; smallpox, R0=5.583; rubella, R0~91; influenza, R0~1484; measles, R0~161.  
Note that estimates for rubella, influenza and measles were drawn from published ranges of 
values, and are intended to be illustrative only. 
 
3.2.1  Superspreading events in the published literature 

Disease Z Setting Patient Circumstances Ref.

Ebola HF 46 Community ?M Active social life, including 
workplace contacts; possibility of 
spread by injection (re-used 
needles). 

14 

Ebola HF 28-
38+ 

Hospital 29M “Popular” doctor, with many 
visitors during hospitalization 
before death. 

36 

Ebola HF 21+ Funeral 45F Misdiagnosed, leading to 
traditional funeral with washing 
and handling of cadaver. 

36 

Influenza 38 Airplane 21F All infections occurred aboard 
grounded airplane with ventilation 
system turned off for three hours; 
severe cough. 

23 

Lassa fever 16 Hospital 25F Misdiagnosed; atypical 
presentation with severe cough. 
Possible airborne spread via air 
currents from bed to rest of ward. 

22 
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Measles 69 High school 16F Hacking cough; high school setting 33 

Measles 84 High school 16M Hacking cough; high school setting 33 

Measles 250 Dance party ?M First arrival of measles in 
Greenland—true virgin population. 
Index case attended crowded 
“dancing-lik” party. 

85 

Mycoplasma 
pneumonia 

26 Fraternity 
banquet 

Unk.* “Gross bacchanal” fraternity 
banquet: inebriation, cigar smoke 
membrane irritation, vomiting, 
shouting; participants “drenched 
with food missiles, drinks and 
gastric contents”. 

86 

Pneumonic plague 32 Funeral ?W Funeral attendees and visitors of an 
unrecognized case. 

35 

Rubella 18 Home and 
parties 

20M Previous (ongoing) respiratory 
illness with  cough. 

24 

Rubella 37+ Discotheque ?M Crowded discotheque; possible 
airborne spread via air flow from 
index case to crowd. Singing 
thought to aid aerosolization. 

17 

SARS 13 Hotel and 
hospital 

64M Undiagnosed: SARS not yet 
recognized. 

87 

SARS 20 Hospital 47M Undiagnosed: SARS not yet 
recognized. 

40 

SARS 187+ Apartment 
block 

26M Amoy Gardens outbreak. 
Hypothesis: unsealed plumbing 
and bathroom fans led to 
aerosolized virus, infecting many 
in apartment complex. 

88 

SARS 21 Hospital 22? Undiagnosed: SARS not yet 
recognized. 

34 

SARS 23 Hospital 27? Undiagnosed: SARS not yet 
recognized. Patient was  HCW 
infected nosocomially. 

34 

SARS 23 Hospital 53? Patient infected nosocomially, co-
morbidities. 

34 

SARS 40+ Hospital 60? Misdiagnosed.  Patient infected 
nosocomially, co-morbidities. 

34 

SARS 12 Vegetable 
market, hospital

64? Misdiagnosed, with co-morbidities. 
Patient transmitted with minimal 
contact (e.g. twice to taxi drivers). 

34 
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SARS 44 ? ? Co-morbidities. 40 

SARS 137 Hospital worker 43M Co-morbidities; ‘popular hospital 
laundry worker’, continued work 
despite symptoms 

40 

SARS 33 Hospital 62W Undiagnosed: SARS not yet 
recognized.  Patient infected 
nosocomially, with co-morbidities.  
High contact rate (many visitors) 
and no precautions in hospital. 

10 

SARS 10 Hospital 70W Undiagnosed: SARS not yet 
recognized.  Patient infected 
nosocomially, no precautions in 
hospital. 

10 

SARS 8 Hospital 69W Undiagnosed: SARS not yet 
recognized.  Patient infected 
nosocomially, no precautions in 
hospital. 

10 

SARS 12 Construction 
site 

23M High number of contacts at home 
and worksite. 

10 

SARS 19 Home, hospital ?M Misdiagnosed due to unknown 
contact history,  co-morbidities. 

38 

SARS 24/2 Home, 
emergency 
room, ICU, 
hospital 

?M Unprotected exposure to index 
patient and wife of emergency 
personnel in ambulance, and of  
patients and staff in emergency 
room. Intubation procedure 
infected HCWs despite protective 
equipment. 

38 

Smallpox 19 ? ? No details available. 20, 

p.1077

Smallpox 11 Social contacts 38M Undiagnosed: smallpox not 
suspected.  Visited with family and 
friends following travel abroad. 

20, 

p.1092

 

Smallpox 38 Hospital spread 
to HCWs and 
patients 

30M Undiagnosed: smallpox not 
suspected.  Noted as interesting 
case and shown to students and 
staff in hospital. 

20, 

p.1092

Smallpox 16  ? Undiagnosed: mild ambulant case, 
not recognized as smallpox. 

20, 

p.1908
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Smallpox 17 Hospital  ? Airborne spread despite “rigorous 
isolation”; aided by severe 
bronchitis, low humidity, and 
strong air currents 

20, 

p.193 

Streptococcus 
group A (type 46) 

10 Army barrack ?M Asymptomatic case, with  strongly 
positive nose and throat cultures. 

15 

Streptococcus 
group A (type 1) 

100+ Hospital 
cafeteria   

?M Food handler with strongly positive 
nose culture and very high hand 
cultures; directly handled each 
piece of apple pie (popular item in 
cafeteria). 

15 

Tuberculosis 40/2 Rock concert ? 2 index cases in rock band, 
infected “hundreds, if not 
thousands” of fans, at least 40 
active cases.  Airborne spread 
aided by singing. 

16 

Tuberculosis 56  9M Undiagnosed case, children not 
usually infectious with TB 

89 

 
Notes 
Fractional entries in Z column denote more than one possible index case. 
Patient column shows age and sex of index case, when known. 
* index case not identified.  
HCW: healthcare worker 
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