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Supplementary Fig 1.  Prediction of SSE frequency.   
The expected proportion of infectious cases causing 99th-percentile SSEs (ΨR,k) for outbreaks 
with Z~NegB(R,k), plotted versus k.  Each curve shows the relationship for a particular value of 
the effective reproductive number, R.  The values of R plotted were selected such that 
Pr(Z≤Z(99)|Z~Poisson(R))=0.01.  See Supplementary Notes for details of the calculation. 
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Supplementary Fig 2.  Branching process results for Z~NegB(R0,k).   
(a) The probability generating function of the negative binomial distribution, plotted for R0=3 and 
different dispersion parameters k.  The y-intercept of the pgf equals p0, the probability that an 
infected individual will infect nobody, and is a major factor in the rising probability of extinction 
as k decreases.  The extinction probability q is determined by the point of intersection of the pgf 
with a line of slope 1 (dashed) through the origin.  (b) The probability of stochastic extinction 
given introduction of a single infected individual, q, rises to 1 as kØ0 for any value of R0. 
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Supplementary Fig 2.  Branching process results for Z~NegB(R0,k) (cont).   
(c) Expected size of a minor outbreak (i.e. an outbreak that dies out spontaneously) versus R0.  
Curves for all k values are identical for R0<1. (d) The probability of stochastic extinction by the 
nth generation of transmission, qn, for R0=3 and a range of k.  Interestingly,  for the third and 
subsequent generations, the k=1 case has the highest continuing probability of extinction.  
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Supplementary Fig 2.  Branching process results for Z~NegB(R0,k) (cont).   
(e) Growth rate of simulated outbreaks with R0=1.1 and one initial case, conditional on non-
extinction.  Boxes show interquartile range (IQR) and median (in grey) of the first disease 
generation with 100 cases; whiskers show most extreme values within 1.5µIQR of the boxes, and 
crosses show outliers.  Percentages show the proportion of 10,000 simulated outbreaks that 
reached the 100-case threshold (i.e. roughly 1-q).  (f) Growth rate of simulated outbreaks with 
R0=3.  Both (e) and (f) are exactly analogous to Fig 2c except for different values of R0.  
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Supplementary Figure 3.  Impact of control measures.   
(a) Probability of stochastic extinction for diseases with different degrees of individual variation, 
k, under population-wide control policies where the infectiousness of all individuals is reduced by 
a factor c.  (b) Probability of stochastic extinction under individual-specific control policies where 
a randomly-selected proportion c of infectious individuals have their infectiousness reduced to 
zero.  In (a) and (b), outbreaks had R0=3 and began with a single infectious case, and control was 
assumed to be present from the outset.  The difference between (b) and (a) is shown in Fig. 3a in 
the main text.  (c) Effect of random versus targeted control measures.  The plot is exactly 
analogous to Fig. 3c in the main text, except that in the targeted control scenario individuals in 
the top 20% of infectiousness are ten-fold more likely to be controlled than those in the bottom 
80% (rather than four-fold more likely as in Fig. 3c), so 71% of control effort is focused in the 
top 20% of cases (rather than 50% in Fig. 3c).  The probability of outbreak containment (i.e. 
never reaching 100 cases) is shown for four diseases with R0=3 and k=0.1 (blue), k=0.5 (green), 
k=1 (black), or k→∞ (purple).  Control policies are population-wide (solid lines), random 
individual-specific (dotted lines), or targeted individual-specific (dashed lines).  (d) The factor by 
which targeting increased the impact of control on preventing a major outbreak relative to random 
individual-specific control, for the simulations shown in (c).  For k→∞, targeting has no effect so 
this factor is 1, and dotted and dashed lines overlay one another in (c).  Results in (c) and (d) are 
the mean of 10,000 simulations, with control beginning in the second generation of cases. 
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Supplementary Fig 4.  Estimation of the negative binomial dispersion parameter k from full 
datasets and from mean and proportion of zeroes.  
Each point corresponds to an outbreak for which we have full information on Z, so we are able to 
estimate ˆ k mle  and the corresponding bias-corrected bootstrap 90% confidence interval.  For the 
same dataset, we then discarded all information except the mean and proportion of zeros and 
estimated ˆ k pz  and Anscombe’s large-sample confidence interval (method 4 in Section 2.2.4 of the 

Supplementary Notes).  
 


