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1. The relationship between the sinogram and the real space 

In this report we propose an alternative approach to correct those errors, mainly translational and 

tilting errors, using the sinogram and the fixed point. We focused on the fact that there must be a 

"not-moving" point in the projected image of a specimen just like the concept of center-of-mass. 

It is hardly possible to determine the CoR of the specimen because, even though the RA hasn't 

changed, it looks like changed when the specimen itself was rotated. We did not seek to 

determine the CoR; instead, we aligned the vertical center line of projection to the CoR to make it 

like a virtual RA, which was enabled by our algorithm.  

The sinogram was constructed by a projection image of the circular specimen, a cross-sectional 

image of a cylinder in 2D. Fig. S1a shows when the specimen was located on the center of the 

stage. The stage rotated clockwise for the entire 180° or 360°, and the x-ray beam was fixed at 

𝜃 = 0. The sinogram pattern is linear in this case. One can easily spot the changes of the 

sinogram pattern when the cylinder was moved toward the parallel beam on the stage in Fig. S1b, 

and when it was moved to the left from the beam in Fig. S1c. The projection shadow from an 

angle remains the same, even when the specimen was moved to a different spot and had a 

different sinogram pattern.  

 

2. Translation error 

2.1 Continuity & Discontinuity by an Object movement and a CT system Vibration  

Assumed that the projection images are all clear, it is the translation error that we can first think 

of in the 2D space during the beam time. We categorized translation errors into two; the 

orthogonal translation and the parallel translation, which are the two elements in the basis that 

we decided to consider in this study. By the orthogonal translation, we mean that the specimen is 

moved vertically from the parallel beam at the projection angle 𝜃, while the parallel translation 

means that the specimen is moved toward to or away from the parallel beam. These two types of 

errors let us distinguish whether a certain error can be corrected or not, because the error 

occurring horizontally to the beam is hard to notice, and therefore hard to calculate the distance 

of shift. And significantly, the pattern of sinogram flows continuously showing no discontinuity in 

parallel translation (Fig. S2a). 

 



2.2. An optimization algorithm of translation error 

The error occurring vertically to the beam shows a definite cut-off point as the graph of Fig. S2b 

illustrates. In Fig. S2b, the error appeared when the parallel beam was shoot perpendicularly to 

the stage and the cut-off of the sinogram was reflected at the 90 degrees of 𝜃. The error that 

arises when the specimen is moved perpendicularly to the beam is always reflected identically on 

the projection and the discontinuity of equal amount is also found in the sinogram. As a result, 

we can spot the exact point where the discontinuity happens and correct this error mathematically. 

If we have an orthogonal translation error in the 𝑒-th column, the correction process has to start 

from the point where the error occurred and the rest of sinogram has to be modified accordingly. 

Let us calculate how far the shadow has to be compensated in order to make this inaccurate 

sinogram an errorless, ideal one. 𝑉𝑛 is the distance to which the 𝑛-th column has to be moved in 

the sinogram, and it is written as follows:  

𝑉𝑛 = 𝑣 ∗ cos(𝜃𝑛 − 𝜃𝑒) , 𝑛 ≥ 𝑒 (or 𝑛 < 𝑒) 

𝜃𝑛 indicates the angle of 𝑛-th column and 𝜃𝑒 is the angle at which the orthogonal translation 

error occurred in the sinogram. 𝑣 is the distance that the object is vertically moved to, and can 

be measured through the two columns 𝜃𝑒−1 and 𝜃𝑒 in the sinogram, for the sinogram exactly 

reflects the shift. To find 𝑣, we used a certain section of 𝑒-th column and the section will be 

compared to the part of (𝑒 − 1)-th column. Here, calculating 𝑣 is an issue of the optimization 

problem and 𝑓𝑒(𝑡)has an absolute minimum at 𝑡 = 𝑣 and 𝑛 = 𝑒. 

𝑓𝑛(𝑡) =
1

𝑚
{∑|𝑝𝑛−1(𝑘 + 𝑠 − 1) − 𝑝𝑛(𝑘 + 𝑠 − 1 + 𝑡)|

𝑚

𝑘=1

} , −s < 𝑡 < 𝑠 

A total pixel number 𝑚 is used in calculation. 𝑠 is the starting point in the (𝑒 − 1)-th column. 

𝑝𝑖(𝑗) indicates the value of a pixel position at 𝑖-th column and 𝑗-th row in sinogram; 𝑝1(1) 

indicates the initial pixel point. If the object’s shadow length in the sinogram is small enough 

compared to the projection size, 𝑚 =
1

2
∗ 𝑛𝑦, 𝑠 =

𝑛𝑦

4
 is enough to use (𝑛𝑦 is the total vertical pixel 

number). 𝑡 is an integer and indicates translation. To simplify the calculation, we assumed that 

the pixel length is the unit length. To obtain the real value of 𝑣, it is possible to use the 

symmetric axis of a quadratic equation with 𝑣 − 1, 𝑣, 𝑣 + 1 and their 𝑓𝑛. 

For example, the values of 𝑣 = 49, and 𝜃𝑒 = 90° were obtained when the sinogram of Fig. S2b 

was analyzed. Any abnormal peaks were checked to figure out 𝜃𝑒in the graph where x-axis 

indicates the angle and y-axis indicates the average difference value 𝑣,  which is the distance 



between two columns of 𝑡 = 0. After finding 𝜃𝑒 , we calculated 𝑣 by the minimum value of 

𝑡, 0 ≤ 𝑡 ≤ 60. Using the vertical movement value driven from the following formula, 𝑉𝑛 = 49 ∗

cos(𝜃𝑛 − 90°) (𝜃𝑛 ≥ 90°), the sinogram of Fig. S2b was transformed to an ideal one shown in Fig. 

S1a. Generally, it will be transformed to an similar-to-ideal one which satisfies the optimization 

formula, because we don’t exactly know the column information of the ideal sinogram at 𝜃𝑒 . Fig. 

S4a,b shows how we can apply the orthogonal translation algorithm to the real projections.  

If only we know the angle 𝜃 at the moment of parallel translation error, we can figure out the 

distance of error using a similar technique we used for vertical translation error compensation; the 

parallel translation error is corrected in the same way. The formula for this is presented below. 

(See the Fig. S2a)  

𝑃𝑛 = 𝑝 ∗ sin(𝜃𝑛 − 𝜃𝑒) , 𝑛 ≥ 𝑒 (or 𝑛 < 𝑒) 

𝑃𝑛 is the distance to which the 𝑛-th column has to be moved in the sinogram. 

 

2.3 The limit of Optimization 

In our study, we realized that every single point on the stage shows a periodic motion around the 

RA and the motion will be reflected as a sinusoidal function on the sinogram. If we try to 

optimize the errors, the optimization was only done to the moment of the error occurred in the 

sinogram, and the sinogram was vertically moved to connect the discontinuity without talking the 

sinusoidal function into account. This, unfortunately, leads to flawed image reconstruction. So, we 

had to use a formula like 𝑉𝑛 to modify our sinogram. This is shown quite intuitively in Fig. S3. An 

object was placed on the exact center-of-rotation, and the ideal sinogram of the object is found in 

the Fig. S3a. If there is a vertical error at the 90 degrees, the sinogram will be like Fig. S3b, and 

the error will be also seen in the reconstructed image. Simply moving vertically and linking the 

sinogram will bring us a sinogram like Fig. S3c and it will still yield incorrect, but different kind of 

reconstructed image. Our formula 𝑉𝑛, when the sinogram after the error is corrected, will bring a 

correct reconstructed image that is the same with the original image. Yet, it is not considered as a 

perfect reconstruction because what we used is the information of 𝜃𝑒−1, not the exact point of 

error, 𝜃𝑒 , in optimization with the formula 𝑉𝑛. Therefore, we eventually need the function 𝑻𝑟,φ,h, 

using CA or FP.  

 



3. Tilting error 

3.1 The need to distinguish the tilt of RA and the one of the object in tilting errors.  

If a cylindrical object on the stage is tilted and projected, we cannot tell whether it is the object 

or the RA of the stage that is tilted, only by looking at the projection image. However, those two 

should be distinguished and defined. When the RA is upright and only the object is tilted, it 

should not be called a tilting error and consequently, the projection set should not be corrected. 

Instead, it should be considered as we put some other object which originally has a tilted shape. 

As it sounds ironical, one would hardly get an ideal projection set if this kind of error is corrected 

because the original projection set was already correct. Nevertheless, it is hard to tell the 

difference between the tilt of an object and the one of a RA in the projection image; one should 

turn to the sinogram in this case because these errors will be seen more easily and clearly in the 

sinogram.  

 

3.2 Categorization of tilting errors 

It is the projection image of a cylinder standing perpendicularly on the RA of the stage in the Fig. 

S4a. Fig. S4b shows a projection image of the cylinder that is leaned in parallel with the beam 

and its depth of the shadow is changed, meaning the information of the image is changed. One 

can see the projection image of the same cylinder tilted vertically in Fig. S4c. It is shown that the 

depth of shadow remains unchanged, even though the object is tilted; the projection information 

is not changed. 

 

4. Rotation errors 

When we have a rotation error, some information of the image projected from certain angles is 

lost when the angles of x-ray beam and the rotation overlap. For instance, only the same face of 

an object is projected even though the beam supposedly takes every different projection, when 

the rotation of specimen itself countervails that of the beam. In this case, we are not able to 

obtain every projection image of every angle, namely a complete projection set, which is an 

essential element in x-ray tomography. And therefore, we will not discuss further on the issue in 

this study. 

 



5. The linearity of the relationship between x-ray absorption and the thickness of an object. 

As other studies have pointed out, most of the objects maintain the linear relationship in the soft 

x-ray area. We should be able to modify them if it is the object that does not present linear 

relationship or it is in other x-ray area than soft x-ray. If the material that consists of the specimen 

is relatively identical and the x-ray attenuation function against length is a one-to-one function 

having the single attenuation coefficient (AC), the linearity can be granted with a simple 

modification. If the AC is composed of materials that are not identical, what we can do is to 

ensure the linearity to the projected image of an object that has the shortest section of linearity 

guaranteed. 

The CA in our study is expected to significantly contribute to a better image reconstruction in x-

ray tomography and to be utilized as a versatile tool. Nevertheless, there is a definite limit. For 

instance, when the specimen is mixed up with materials having greatly diverse ACs to the extent 

where it is out of linearity, it is hard to compensate the nonlinear area and this may result in 

errors. And it is not beneficial to use the CA in those cases when the specimen is projected with 

impermeable materials like metal to make it distinguished. It is better to project the specimen 

itself without any other distinguishing material when anyone wants to use CA in image 

reconstruction. The ring artifact due to the CCD defect could be another hurdle in CA application. 

We need to correct the ring artifact beforehand; the correction itself can also raise some changes 

in reconstruction errors. 

To obtain well reconstructed image, we should make sure to get a consistent x-ray density 

against the object regardless of projecting angles. In reality though, we sometimes get the 

different x-ray density according to the projecting angle changes, and then, the value of   also 

should be changed in the formula applying the CA. It would be difficult to generally use CA for 

the reconstruction if the location of CA depends on the changes of x-ray density and the   value. 

The changes of x-ray density (according to the angle) will appear in the sinogram in forms of the 

shadow intensity. Nonetheless, it won't affect the pattern of the sinogram. In Fig. 2, the pattern of 

ideal sinogram was maintained although there was a 50% decrease in x-ray density from the 90 

degrees of 𝜃. The reconstructed image using the sinogram with the CA and the   ,φ,h function 

applied (Fig. 2e) showed no difference in terms of image itself when compared with the 

reconstructed image of Fig. 2d, and the image of specimen in Fig. 2e was laid in the center. This 

proves to us that the location of CA does not vary despite the changes of   value against each 𝜃 

drawn by the different x-ray density. Also, we may be able to get a better image if we 

mathematically modify the x-ray density in order to even up the   value. 

 



Supplementary Figures (S1-S7) 

 

Figure S1| The sinograms of specimen that were placed on several different part of the stage. 

Notice that we marked the stage with the red dot at the bottom to indicate   is zero degree. 

a, The sinogram when the specimen rotates on the center of the stage. b, The sinogram when the 

specimen is translated in parallel with the beam at 𝜃 = 0°. c, The sinogram when the specimen is 

translated vertically to the beam at 𝜃 = 0° 

 

 

 

 



 

 

Figure S2| The sinograms with the translation errors during the beam time. a, When the 

specimen is translated in parallel with the beam at 𝜃=90°, the pattern of sinogram shows a 

change, but flows continuously. The graph which illustrates the value change of 𝑓𝑛(𝑡) to the angle, 

𝜃, doesn't have any discontinuity, therefore, it is hard to spot the specimen. b, When the 

specimen is translated vertically to the beam at 𝜃=90°, there is a discontinuity in the sinogram 

pattern. It is the same in case of the graph with the value change of 𝑓𝑛(𝑡) to the angle, 𝜃. The 

discontinuity is found at 𝜃𝑒 = 90°, and the minimum is found at 𝑡 = 49 in the graph. 
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Figure S3| Vertical Translation with Optimization method. a, The ideal sinogram and its 

reconstruction image that were from the specimen of Fig. S1a. b, The sinogram with vertical 

translation error at 𝜃 = 90° and its reconstruction image. The translation error is found also in the 

reconstruction image. c, The translation error in b was optimized meaning that the part of 

sinogram after the discontinuity was cut and pasted by the distance of translation error in this 

sinogram. Another error was found in its reconstruction image.  

 

 

 

 



 

Figure S4| The shadow changes depending on the location of a cylindrical specimen. a, The 

projection image when the specimen stands upright.  When translated without tilts, the shadows 

are of same shapes even when the locations on the projection are different. b, The projection 

image when the specimen is tilted in parallel with the beam. The shadow is darker than before; 

the information of the image is changed and the restoration with the projection image is not easy 

in this case. c, The projection image with the vertical tilt of the specimen. The shadow is leaned, 

however, the information of the image remains the same. In this case, it is possible to restore with 

the projection image.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure S5| An object of prolate spheroid is located on the rotating stage, which has the 

center of CCD as the RA, and rotates for the 360 degrees. The CA is at the height of  =  , 

and the distance from the center is  =  . The azimuthal angle of the object is 0 degree 

when the   is zero. The white dot and the line represent where    
⃑⃑ ⃑⃑ ⃑⃑  ⃑ lies against each  . a, It 

is the sinogram of the  = 0 layer when the object is at 𝜃 = 90° and there is not any known 

error. b, It is the sinogram of the  = 0 layer when there was a translation error at 𝜃 = 90°. The 

location of the object in the involved layer is moved to the lower left on the stage and its shape 

is narrower, compared to that of a. This is reflected in the sinogram; the location of shadow and 

its width have changed (Look at the magnified part of the sinogram). c, The 𝑃  
⃑⃑ ⃑⃑ ⃑⃑   in the projection 

of b was translated vertically to the stage, exactly on the layer in which the 𝑃  
⃑⃑ ⃑⃑ ⃑⃑   without error 

exists,  = 0. The location of shadow has not changed, however, the width now becomes identical 

with the other 𝜃s in the sinogram. d, When we aligned 𝑃  
⃑⃑ ⃑⃑ ⃑⃑   on the function   ,φ, , the 𝑃  

⃑⃑ ⃑⃑ ⃑⃑  s were 

all gathered onto one dot on the center of the stage, and the sinogram became linear.  

 

 

 

 

 

 

 

 

 



 

 

Figure S6| The trajectory of fixed point when there were several errors during the beam time. 

When the translation error and tilting error occurred partially, we can get the RA of each 

piecewise continuous section by analyzing the trajectory of fixed point in each section. We can 

obtain the well reconstructed image when we modify the projections using these RAs. 

 

 

 

Figure S7| Our hypothesis for the reconstruction between the real specimen and the ideal 

reconstruction image.  

 


