<iframe src="https://www.googletagmanager.com/ns.html?id=GTM-KCV32QR" height="0" width="0" style="display:none;visibility:hidden">
Free access

Toward a new synthesis: Major evolutionary trends in the angiosperm fossil record

June 20, 2000
97 (13) 7030-7036

Abstract

Angiosperm paleobotany has widened its horizons, incorporated new techniques, developed new databases, and accepted new questions that can now focus on the evolution of the group. The fossil record of early flowering plants is now playing an active role in addressing questions of angiosperm phylogeny, angiosperm origins, and angiosperm radiations. Three basic nodes of angiosperm radiations are identified: (i) the closed carpel and showy radially symmetrical flower, (ii) the bilateral flower, and (iii) fleshy fruits and nutritious nuts and seeds. These are all coevolutionary events and spread out through time during angiosperm evolution. The proposal is made that the genetics of the angiosperms pressured the evolution of the group toward reproductive systems that favored outcrossing. This resulted in the strongest selection in the angiosperms being directed toward the flower, fruits, and seeds. That is why these organs often provide the best systematic characters for the group.

Continue Reading

Acknowledgments

I acknowledge with thanks the help of Terry Lott and Katherine Dilcher in the preparation of this manuscript. Thanks to Peter Raven who read and commented on this paper and also to the many students and colleagues who shared perspectives of angiosperm evolution with me. I thank the organizers of the symposium at which this paper was presented: Francisco Ayala, Walter Fitch, and Michael Clegg.

References

1
G L Stebbins Variation and Evolution in Plants (Columbia Univ. Press, New York, 1950).
2
D L Dilcher Bot Rev 40, 1–157 (1974).
3
G G Simpson Tempo and Mode in Evolution (Columbia Univ. Press, New York, 1944).
4
S R Manchester Paleontogr Am 58, 1–205 (1994).
5
G L Stebbins Flowering Plants: Evolution Above the Species Level (Harvard Univ. Press, Cambridge, 1974).
6
L J Hickey, J A Wolfe Ann Missouri Bot Gard 62, 538–589 (1975).
7
L J Hickey Am J Bot 60, 17–33 (1973).
8
J A Doyle, L J Hickey Origin and Early Evolution of Angiosperms, ed C B Beck (Columbia Univ. Press, New York), pp. 139–206 (1976).
9
D L Dilcher, F W Potter, W L Crepet Am J Bot 63, 532–544 (1976).
10
J L Roth, D L Dilcher Am J Bot 66, 1194–1207 (1979).
11
J H Jones, D L Dilcher Am J Bot 67, 959–967 (1980).
12
M Sheffy Ph.D. thesis (Indiana University, Bloomington, 1972).
13
S R Manchester Ph.D. thesis (Indiana University, Bloomington, 1981).
14
J L Roth Ph.D. thesis (Indiana University, Bloomington, 1981).
15
J H Jones Ph.D. thesis (Indiana University, Bloomington, 1984).
16
R N Schwarzwalder Ph.D. thesis (Indiana University, Bloomington, 1986).
17
P S Herendeen Ph.D. thesis (Indiana University, Bloomington, 1990).
18
P S Herendeen, D L Dilcher Rev Palaeobot Palynol 62, 339–361 (1990).
19
P S Herendeen, D L Dilcher Syst Bot 15, 526–533 (1990).
20
P S Herendeen, D L Dilcher Am J Bot 78, 1–12 (1991).
21
P S Herendeen, W L Crepet, D L Dilcher Advances in Legume Systematics: Part 4, The Fossil Record, eds P S Herendeen, D L Dilcher (Royal Botanic Gardens, Kew), pp. 303–316 (1992).
22
G F Dolph Ph.D. thesis (Indiana University, Bloomington, 1974).
23
G F Dolph Palaeontogr Abt B 151, 1–51 (1975).
24
Manual of Leaf Architecture: Morphological Description and Categorization of Dicotyledonous and Net-Veined Monocotyledonous Angiosperms (Smithsonian, Washington, DC, 1999).
25
D L Dilcher Rev Palaeobot Palynol 27, 291–328 (1979).
26
J A Doyle J Arnold Arboretum 50, 1–35 (1969).
27
W L Kovach, D L Dilcher Palynology 12, 89–119 (1988).
28
Q C Huang Ph.D. thesis (Indiana University, Bloomington, 1992).
29
W L Crepet, K C Nixon Am J Bot 85, 1122–1133 (1998).
30
W L Crepet, K C Nixon Am J Bot 85, 1273–1288 (1998).
31
W L Crepet, K C Nixon, M A Gandolfo Asociacion Paleontologico Argentina, Publicacion Especial. VII International Symposium on Mesozoic Terrestrial Ecosystems (Buenos Aires, Argentina, in press. (2000).
32
M A Gandolfo, K C Nixon, W L Crepet Am J Bot 85, 376–386 (1998).
33
M A Gandolfo, K C Nixon, W L Crepet Am J Bot 85, 964–974 (1998).
34
M A Gandolfo, K C Nixon, W L Crepet, D W Stevenson, E M Friis Nature (London) 394, 532–533 (1998).
35
E M Friis, K R Pedersen, P R Crane Ann Missouri Bot Gard 86, 259–296 (1999).
36
K C Nixon, W L Crepet Am J Bot 80, 616–623 (1993).
37
H Bandulska J Linn Soc (London) Bot 46, 427–441 (1924).
38
W N Edwards Biol Rev 10, 442–459 (1935).
39
R Florin K Svenska Vetensk Akad Handl 10, 1–588 (1931).
40
D L Dilcher, P R Crane Ann Missouri Bot Gard 71, 351–383 (1984).
41
Ge Sun, D L Dilcher, S Zheng, Z Zhou Science 282, 1692–1695 (1998).
42
S Leclercq, H N Andrews Ann Missouri Bot Gard 47, 1–23 (1960).
43
S Leclercq, H P Banks Palaeontogr Abt B 110, 1–34 (1962).
44
T Delevoryas Palaeontogr Abt B 97, 114–167 (1955).
45
T N Taylor, E L Taylor The Biology and Evolution of Fossil Plants (Prentice–Hall, Englewood Cliffs, NJ, 1993).
46
S Magallón, P R Crane, P S Herendeen Ann Missouri Bot Gard 86, 297–372 (1999).
47
D L Dilcher Experimental and Molecular Approaches to Plant Biosystematics, eds P C Hock, A G Stephenson (Missouri Botanical Gardens, St. Louis), pp. 187–198 (1995).
48
P K Endress Diversity and Evolutionary Biology of Tropical Flowers (Cambridge Univ. Press, Cambridge, 1994).
49
J F Basinger, D L Dilcher Science 224, 11–13 (1984).
50
Dilcher, D. L. & Muller, M. (2000) Rev. Palaeobot. Palynol., in press.
51
Sun, Ge, Dilcher, D. L., Zheng, S. & Wang, X. (2000) Rev. Palaeobot. Palynol., in press.
52
G Retallack, D L Dilcher Ann Missouri Bot Gard 75, 1010–1057 (1988).
53
C C Labandeira, D L Dilcher, D R Davis, D L Wagner Proc Natl Acad Sci USA 91, 12278–12282 (1994).
54
C C Labandeira Science 280, 57–59 (1998).
55
D L Dilcher, W L Crepet, C D Beeker, H C Reynolds Science 191, 854–856 (1976).
56
B H Tiffney Ann Missouri Bot Gard 71, 551–576 (1984).
57
D E Stone Brittonia 25, 371–384 (1973).
58
E M Reid, M E J Chandler The London Clay Flora (British Museum of Natural History, London, 1933).
59
V Call, D L Dilcher Organisation Internationale de Paleobotanique 4eme Conference, Paris (Organisation Francaise de Paleobotanique Information, Paris), pp. 36 (1992).
60
D W Taylor, L J Hickey Science 247, 702–704 (1990).
61
D L Dilcher Conferencias VI Congreso Latinoamericano De Botanica, Mar Del Plata - Argentina 1994, ed R H Fortunato (Royal Botanic Gardens, Kew), pp. 29–48 (1996).
62
W M Fontaine US Geol Surv Monogr 15, 1–377 (1889).
63
L Lesquereux US Geol Surv Monogr 17, 1–400 (1891).
64
W A Bell Geol Surv Canada Memoir 293, 1–84 (1957).
65
J S Newberry US Geol Surv Monogr 35, 1–295 (1898).
66
R W Brown US Geol Surv Prof Paper 375, 1–119 (1962).
67
E W Berry US Geol Surv Prof Paper 92, 1–206 (1924).
68
H D MacGinitie Univ Calif Pub Geol Sci 83, 1–140 (1969).
69
D I Axelrod Univ Calif Pub Geol Sci 59, 1–83 (1966).
70
G R Upchurch, D L Dilcher US Geol Surv Bull 1915, 1–55 (1990).
71
B U Haq, F W B van Eysinga Geological Time Table (Elsevier, 5th Ed., Amsterdam, 1998).

Information & Authors

Information

Published in

Go to Proceedings of the National Academy of Sciences
Go to Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences
Vol. 97 | No. 13
June 20, 2000
PubMed: 10860967

Classifications

    Submission history

    Published online: June 20, 2000
    Published in issue: June 20, 2000

    Acknowledgments

    I acknowledge with thanks the help of Terry Lott and Katherine Dilcher in the preparation of this manuscript. Thanks to Peter Raven who read and commented on this paper and also to the many students and colleagues who shared perspectives of angiosperm evolution with me. I thank the organizers of the symposium at which this paper was presented: Francisco Ayala, Walter Fitch, and Michael Clegg.

    Authors

    Affiliations

    David Dilcher*
    Florida Museum of Natural History, University of Florida, Gainesville, FL 32611-7800

    Notes

    *

    Metrics & Citations

    Metrics

    Note: The article usage is presented with a three- to four-day delay and will update daily once available. Due to ths delay, usage data will not appear immediately following publication. Citation information is sourced from Crossref Cited-by service.


    Citation statements

    Altmetrics

    Citations

    If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

    Cited by

      Loading...

      View Options

      View options

      PDF format

      Download this article as a PDF file

      DOWNLOAD PDF

      Get Access

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Personal login Institutional Login

      Recommend to a librarian

      Recommend PNAS to a Librarian

      Purchase options

      Purchase this article to get full access to it.

      Single Article Purchase

      Toward a new synthesis: Major evolutionary trends in the angiosperm fossil record
      Proceedings of the National Academy of Sciences
      • Vol. 97
      • No. 13
      • pp. 6921-7662

      Media

      Figures

      Tables

      Other

      Share

      Share

      Share article link

      Share on social media