Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Enhancing immune responses using suicidal DNA vaccines

Abstract

We describe a DNA vaccine strategy that allows antigens to be produced in vivo in the context of an alphaviral replicon. Mice immunized with such vectors developed humoral and cellular immune responses at higher levels than mice that received a conventional DNA vaccine vector. Immunized animals acquired protective immunity to lethal influenza challenge. Compared with traditional DNA vaccine strategies in which vectors are persistent and the expression constitutive, the expression mediated by the alphaviral vector was transient and lytic. As a result, biosafety risks such as chromosomal integration, and the induction of immunological tolerance, could be circumvented.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Donnelly, J.J., Ulmer, J.B., Shiver, J.W., and 1997 DNA vaccines. Annu. Rev. Immunol. 15: 17–648.

    Article  Google Scholar 

  2. Robinson, H.L., Lu, S., Feltquate, D.M., Torres, C.T., Richmond, J., Boyle, C.M. et al. 1996. DNA vaccines. AIDS Res. Hum. Retroviruses 12: 455–457.

    Article  CAS  PubMed  Google Scholar 

  3. Tang, D.C., De Vrt, M. and Johnston, S.A. 1992. Genetic immunization is a simple method for eliciting an immune response. Nature 356: 152–154.

    Article  CAS  PubMed  Google Scholar 

  4. Davis, H.L., Michel, M.L. and Whalen, R.G. 1993. DNA-based immunization induces continuous secretion of hepatitis B surface antigen and high levels of circulating antibody. Hum. Mol. Genet. 2: 1847–1851.

    Article  CAS  PubMed  Google Scholar 

  5. Zarozinski, C.C., Fynan, E.F., Selin, L.K., Robinson, H.L. and Welsh, R.M. 1995. Protective CTL-dependent immunity and enhanced immunopathology in mice immunized by particle bombardment with DNA encoding an internal virion protein. J. Immunol. 154: 4010–4017.

    CAS  PubMed  Google Scholar 

  6. Fu, T.-M., Friedman, A., Ulmer, J.B., Liu, M.A., and Donnelly, J.J 1997. Protective cellular immunity: cytotoxic T-lymphocyte responses against dominant and recessive epitopes of Influenza virus nucleoproteins induced by DNA immunization. J. Virol. 71: 2715–2721.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ulmer, J.B.J.J., Parker, S.E., Rhodes, G.H., Feigner, P.L., Dwarki, V.J. et al. 1993. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259: 1745–1749.

    Article  CAS  PubMed  Google Scholar 

  8. Xiang, Z.Q., Spitalnik, S., Tran, M., Wunner, W.H., Cheng, J. and Ertl, H.C.J. 1994. Vaccination with a plasmid vector carrying the rabies virus glycoprotein gene induces protective immunity against rabies virus. Virology 199: 132–140.

    Article  CAS  PubMed  Google Scholar 

  9. Robinson, H.L., Hunt, L A., and Webster, R.G. 1993. Protection against a lethal influenza challenge by immunization with a haemagglutinin-expressing plasmid DNA. Vaccine 11: 957–960.

    Article  CAS  PubMed  Google Scholar 

  10. Letvin, N.L., Monteflori, D.C., Yasutomi, Y., Perry, H.C., Davies, M.E., Lekutis, C. et al. 1997. Potent, protective anti-HIV immune responses generated by bimodal HIV envelope DNA plus protein vaccination. Proc. Natl. Acad. Sci. USA 94: 9378–9383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wolff, J.A., Malone, R.W., Williams, P., Chong, W., Acsadi, G., Jani, A. et al. 1990. Direct gene transfer into mouse muscle in vivo. Science 247: 1465–1468.

    Article  CAS  PubMed  Google Scholar 

  12. Wolff, J.A., Ludtke, J.J., Acsadi, G., Williams, P. and Jani, A. 1992. Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum. Mol. Genet. 1: 363–369.

    Article  CAS  PubMed  Google Scholar 

  13. Alferink, J., Schittek, B., Schonrich, G., Hammerling, G.J. and Arnold, B. 1995. Long life span of tolerant T cells and the role of antigen in maintenance of peripheral tolerance. Int. Immunol. 7: 331–336.

    Article  CAS  PubMed  Google Scholar 

  14. Ferber, I., Schonrich, G., Schenkel, J., Mellor, A.L., Hammerling, G.J. and Arnold, B. 1994. Levels of peripheral T cell tolerance induced by different doses of tolerogen. Science 263: 674–676.

    Article  CAS  PubMed  Google Scholar 

  15. Nichols, W.W., Ledwith, B.J., Manam, S.V. and Troilo, P.J. 1995. Potential DNA vaccine integration into host cell genome. Ann. NY Acad. Sci. 772: 30–39.

    Article  CAS  PubMed  Google Scholar 

  16. Mor, G., Yamschchikov, G., Sedagh, M., Takeno, M., Wang, R., Houghten, R.A. et al. 1996. Induction of neonatal tolerance by plasmid DNA vaccination of mice. J. Clin. Invest. 98: 2700–2705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou, X., Berglund, P., Zhao, H., Liljestrom, P. and Jondal, M. 1995. Generation of cytotoxic and humoral immune responses using non-replicative recombinant Semliki Forest virus. Proc. Natl. Acad. Sci. USA 92: 3009–3013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou, X., Berglund, P., Rhodes, G., Parker, S.E., Jondal, M. and Liljestrom, P. 1994. Self-replicating Semliki Forest virus RNA as recombinant vaccine. Vaccine 12: 1510–1514.

    Article  CAS  PubMed  Google Scholar 

  19. Tubulekas, I., Berglund, P., Fleeton, M. and Liljestrom, P. 1997. Alphavirus expression vectors and their use as recombinant vaccines—a minireview. Gene 190: 191–195.

    Article  CAS  PubMed  Google Scholar 

  20. Dubensky, T.W., Jr., Driver, D.A., Polo, J.M., Belli, B.A., Latham, E.M., Ibanez, C.E. et al. 1996. Sindbis virus DNA-based expression vectors: utility for in vitro and in vivo gene transfer. J. Wol. 70: 508–519.

    CAS  Google Scholar 

  21. Herweijer, H., Latendresse, J.S., Williams, P., Zhang, G., Danko, I., Schlesinger, S. et al. 1995. A plasmid-based self-amplifying Sindbis virus vector. Hum. Gene Ther. 6: 1161–1167.

    Article  CAS  PubMed  Google Scholar 

  22. Frolov, I. and Schlesinger, S. 1994. Comparison of the effects of Sindbis virus and Sindbis virus replicons on host cell protein synthesis and cytopathogeneticity in BHK cells. J. Virol. 68: 1721–1727.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Glasgow, G.M., McGee, M.M., Sheahan, B.J. and Atkins, G.J. 1997. Death mechanisms in cultured cells infected by Semliki Forest virus. J. Gen. Wol. 78: 1559–1563.

    CAS  Google Scholar 

  24. Davis, N.L., Brown, K.W. and Johnston, R.E. 1996. A viral vaccine vector that expresses foreign genes in lymph nodes and protects against mucosal challenge. J. Virol. 70: 3781–3787.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pushko, P., Parker, M., Ludwig, G.V., Davis, N.L., Johnstone, R.E. and Smith, J.F. 1997. Replicon-helper systems from attenuated Venezuelan equine encephalitis virus-expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology 239: 389–401.

    Article  CAS  PubMed  Google Scholar 

  26. Liljestrom, P. and Garoff, H. 1991. A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Bio/Technology 9: 1356–1361.

    Article  CAS  Google Scholar 

  27. Sjoberg, M.E., Suomalainen, M. and Garoff, H. 1994. A significantly improved Semliki Forest virus expression system based on translational enhancer segments from the viral capsid gene. Bio/Technology 12: 1127–1131.

    Article  CAS  Google Scholar 

  28. Levine, B., Huang, Q., Isaacs, J.T., Reed, J.C., Griffin, D.E. and Hardwick, J.M. 1993. Conversion of lytic to persistent alphavirus infection by the bcl-2 cellular oncogene. Nature 361: 739–742.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, J., Asselin-Paturel, C., Bex, F., Bemhard, J., Chehimi, J., Willems, F. et al. 1997. Cloning of IL-12 p40 and p35 DNA into the Semliki Forest virus vector: expression of IL-12 in human tumor cells. Gene Ther. 4: 367–374.

    Article  CAS  PubMed  Google Scholar 

  30. Raz, E., Carson, D.A., Parker, S.E., Parr, T.B., Abai, A.M., Aichinger, G. et al. 1994. Intradermal gene immunization: the possible role of DNA uptake in the induction of cellular immunity to viruses. Proc. Natl. Acad. Sci. USA 91: 9519–9523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Manthorpe, M., Cornefert-Jensen, F., Hartikka, J., Feigner, J., Rundell, A., Margalith, M. et al. 1993. Gene therapy by intramuscular injection of plasmid DNA: studies on firefly luciferase gene expression in mice. Hum. Gene Ther. 4: 419–431.

    Article  CAS  PubMed  Google Scholar 

  32. Hariharan, M.J., Driver, D.A., Townsend, K., Brumm, D., Polo, J.M., Belli, B.A. et al. 1998. DNA immunization against Herpes Simplex virus: Enhanced efficacy using a Sindbis virus-based vector. J. Virol. 72: 950–958.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Brandt, E.R., Linnane, A.W. and Devenish, R.J. 1994. Expression of IFN A genes in subpopulations of peripheral blood cells. Br. J. Haematol. 86: 717–725.

    Article  CAS  PubMed  Google Scholar 

  34. Kaluza, G., Lell, G., Reinacher, M., Stitz, L., and Willems, W.R 1987. Neurogenic spread of Semliki Forest virus in mice. Arch. Virol. 93: 97–110.

    Article  CAS  PubMed  Google Scholar 

  35. Gates, M.C., Sheahan, B.J. and Atkins, G.J. 1984. The pathogenicity of the M9 mutant of Semliki Forest virus in immune-compromised mice. J. Gen. Virol. 65: 73–80.

    Article  PubMed  Google Scholar 

  36. Donnelly, S.M., Sheahan, B.J. and Atkins, G.J. 1997. Long-term effects of Semliki Forest virus infection in the mouse central nervous system. Neuropathol. Appl. Neurobiol. 23: 235–241.

    Article  CAS  PubMed  Google Scholar 

  37. Krieg, A.M., Yi, A.-K., Schorr, J., and Davis, H.L., 1998. The role of CpG dinucleotides in DNA vaccines. Trends Microbiol. 6: 23–26.

    Article  CAS  PubMed  Google Scholar 

  38. Donnelly, J.J., Ulmer, J.B. and Liu, M.A., 1997. DNA vaccines. Life Sci. 60: 163–172.

    Article  CAS  PubMed  Google Scholar 

  39. Berglund, P., Sjöberg, M., Atkins, G.J., Sheahan, B.J., Garoff, H. and Liljestrom, P. 1993. Semliki Forest virus expression system: production of conditionally infectious recombinant particles. Bio/Technology 11: 916–920.

    CAS  Google Scholar 

  40. Liljeström, P. and Garoff, H., 1994. Expression of proteins using Semliki Forest virus vectors, 16.20.11–16.20.16 in Current Protocols in Molecular Biology, Vol. 2. Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Smith, JA, Seidman, J.G. et al. (eds.). Greene Publishing Associates and Wiley Interscience, New York.

    Google Scholar 

  41. Rhodes, G.H., Dwarki, V.J., Abai, A.M., Feigner, J., Feigner, P.L., Gromkovski, S.H. et al. 1993. Injection of expression vectors containing viral genes induces cellular, humoral and protective immunity, 137–141 in Vaccines 93. Ginsberg, H.S., Brown, F, Chanock, R.M., and Lerner, R.A. (eds.). Cold Spring Harbor Press, Cold Spring Harbor, NY

    Google Scholar 

  42. Taswell, C. 1981. Limiting dilution assay for the determination of imunocompetent cell frequencies. J. Immunol. 126: 1614–1619.

    CAS  PubMed  Google Scholar 

  43. Rouml;tzschke, O., Falk, K., Dere, K., Schild, H., Norda, M., Metzger, J. et al. 1990. Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. Nature 348: 252–254.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Liljeström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berglund, P., Smerdou, C., Fleeton, M. et al. Enhancing immune responses using suicidal DNA vaccines. Nat Biotechnol 16, 562–565 (1998). https://doi.org/10.1038/nbt0698-562

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0698-562

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing