Zygotic Genome Activation in Vertebrates

Dev Cell. 2017 Aug 21;42(4):316-332. doi: 10.1016/j.devcel.2017.07.026.

Abstract

The first major developmental transition in vertebrate embryos is the maternal-to-zygotic transition (MZT) when maternal mRNAs are degraded and zygotic transcription begins. During the MZT, the embryo takes charge of gene expression to control cell differentiation and further development. This spectacular organismal transition requires nuclear reprogramming and the initiation of RNAPII at thousands of promoters. Zygotic genome activation (ZGA) is mechanistically coordinated with other embryonic events, including changes in the cell cycle, chromatin state, and nuclear-to-cytoplasmic component ratios. Here, we review progress in understanding vertebrate ZGA dynamics in frogs, fish, mice, and humans to explore differences and emphasize common features.

Keywords: early vertebrate development; maternal-to-zygotic transition; nuclear-to-cytoplasm ratio; zygotic genome activation.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Cellular Reprogramming
  • Embryo, Mammalian / embryology
  • Embryo, Mammalian / metabolism
  • Embryo, Nonmammalian / embryology
  • Embryo, Nonmammalian / metabolism
  • Gene Expression Regulation, Developmental*
  • Genome*
  • Vertebrates / embryology
  • Vertebrates / genetics
  • Zygote / metabolism*