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Konrad Zuse’s Legacy:
The Architecture of the Z1 and Z3
RAÚL ROJAS

This paper provides a detailed description of the architecture of the Z1 and
Z3 computing machines that Konrad Zuse designed in Berlin between 1936
and 1941. The necessary basic information was obtained from a careful
evaluation of the patent application Zuse filed in 1941. Additional insight was
gained from a software simulation of the machine’s logic. The Z1 was built
using purely mechanical components; the Z3 used electromechanical relays.
However, both machines shared a common logical structure, and their pro-
gramming model was the same. I argue that both the Z1 and the Z3 pos-
sessed features akin to those of modern computers: The memory and proc-
essor were separate units, and the processor could handle floating-point
numbers and compute the four basic arithmetical operations as well as the
square root of a number. The program was stored on punched tape and was
read sequentially. In the last section of this paper, I put the architecture of
the Z1 and Z3 into historical perspective by offering a comparison with com-
puting machines built in other countries.

Introduction
onrad Zuse is popularly recognized in Germany as the fa-
ther of the computer, and his Z1, a programmable automa-

ton built from 1936 to 1938, has been called the first computer in
the world. Other nations reserve this honor for one of their own
scientists, and there has been a long and often acrimonious debate
on the issue of who is the true inventor of the computer. Some-
times the discussion is preempted by specifying in full detail the
technological features of a specific machine. The Electronic Nu-
merical Integrator and Computer (ENIAC), for example, has been
called the first “large-scale general-purpose electronic computer
in the world.”2 The ENIAC was built at the Moore School of
Electrical Engineering of the University of Pennsylvania from
May 1943 to 1945. It solved its first problem in December 1945
and was officially presented in February 1946. Another contender
for the title of the first computer is the Mark I, built by Howard
Aiken at Harvard University between 1939 and 1944. The Mark I
was an electromechanical machine, not of the all-mechanical na-
ture of previous computing devices and not built with the elec-
tronics available at the time.1 The machine John Atanasoff built
(later called the ABC) at Iowa State College from 1938 to 1942
used vacuum tubes but was restricted to the addition and subtrac-
tion of vectors and had a structure inappropriate for universal
computation.2 In direct contrast to these three machines, the Z1
was more flexible and was designed to execute a long and modifi-
able sequence of instructions contained on a punched tape. Zuse’s
machines, the Z3 and the Z4, were not electronic and were of
reduced size. Since the Z3 was completed and was successfully
working prior to the Mark I, it has been called the first program-

mable calculating machine in the world. Of course the old debate
will not be closed with this paper, but I want to show here just
how advanced the machines Zuse built were when considered
from the viewpoint of modern computer architecture and com-
pared with other designs of that time.

The Berlin Polytechnic student Zuse started thinking about
computing machines in the 1930s. He realized that he could con-
struct an automaton capable of executing a sequence of arithmeti-
cal operations like those needed to compute mathematical tables.
Coming from a civil engineering background, he had no formal
training in electronics and was not acquainted with the technology
used in conventional mechanical calculators. This nominal deficit
worked to his advantage, however, because he had to rethink the
whole problem of arithmetic computation and thus hit on new and
original solutions.

Zuse decided to build his first experimental calculating ma-
chine exploiting two main ideas:

• the machine would work with binary numbers
• the computing and control unit would be separated from the

storage.

Years before John von Neumann explained the advantages of a
computer architecture in which the processor is separated from
the memory, Zuse had already arrived at the same solution.
However, it must be said that Charles Babbage had the same
idea in the previous century when he designed his Analytical
Engine. In 1936, Zuse completed the memory of the machine he
had planned. (Zuse called it the Speicherwerk (storage mecha-
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nism)—the term Speicher is still used in German instead of the
anthropomorphic term memory that von Neumann introduced;
Babbage used the term store.) It was a mechanical device but
not of the usual type. Instead of using gears (as Babbage had
done in the previous century), Zuse implemented logical and
arithmetical operations using sliding metallic rods. The rods
could move in only one of two directions (forward or backward)
and therefore were appropriate for a binary machine.15 The
processor of the Z1 was completed a few months after the stor-
age unit, using the same kind of technology. It worked in con-
cert with the memory but was never very reliable. The main
problem was the precise synchronization that was needed in
order to avoid applying excessive mechanical stress on the
moving parts. It is interesting to point out that in the same year
that Zuse completed the memory of the Z1, Alan Turing wrote
his ground-breaking paper on computable numbers, in which he
formalized the intuitive concept of computability.

The Z1, although unreliable, showed that the architectural de-
sign was sound and compelled Zuse to start investigating other
kinds of technology. Following the advice of his friend Helmut
Schreyer, he considered using electromechanical relays. Zuse
built an “intermediate” simpler model (the Z2) using a hybrid
approach (a processor built out of relays and a mechanical mem-
ory). In 1938, Zuse started building the Z3, a machine consisting
purely of relays but with the same logical structure as the Z1. It
was ready and operational in 1941, four years before the ENIAC.

This paper offers a detailed discussion of the architecture of the
Z1 and Z3. Zuse reconstructed the Z1 himself in Berlin during the
1980s, and it is now one of the exhibition attractions at the Berlin
Museum of Transportation and Technology. However, the infor-
mation available describes only the design of the mechanical
memory.12 Zuse documented the Z3 in his patent application Z-
391 of 1941, which is rather difficult to decipher due to the non-
standard notation and terminology.14 K.-H. Czauderna’s book4

about the Z3 is a good source to understand the historical envi-
ronment surrounding Zuse’s inventions but does not describe the
Z3 in detail. In what follows, since Z1 and Z3 were equivalent
from the logical and functional points of view, I refer only to the
Z3. The main architectural difference between the Z1 and Z3 was
the fact that the square root operation was left out of the Z1. There
were also minor differences in the number of bits used for arith-
metical operations in the processor (the Z1 used one fewer bit for
the mantissa of floating-point numbers) and the number of cycles
needed for each instruction. With this minor caveat and taking
only the architectural features into account, one can speak of the
Z1 and Z3 as nearly equivalent machines. There has been some
discussion as to whether or not the reconstructed Z1 really corre-
sponds to the original Z1 destroyed during World War II. Zuse
rebuilt the Z1 during the 1980s based on his own recollections,
and it could well be the case that the final machine ended being
more similar to the Z3 than the original Z1. However, Zuse states
in his memoirs that the basic circuits of the Z1 and Z3 were
equivalent,15 and he confirmed this aspect of his work in a private
interview.

Architectural Overview of the Z1 and Z3
This section summarizes the most relevant architectural features
of the Z3. The paper moves from the simple to the complex: First,
I provide an overview of the architecture, then I go into more

detail. In order to avoid awkward sentences, I will refer to the Z3
in the present tense.

Block Structure
The Z3 is a floating-point machine. Whereas other early comput-
ing automatons like the Mark I, the ABC, and the ENIAC worked
with fixed-point numbers, Zuse decided very early on to adopt
what he called “semilogarithmic” notation, which corresponds to
the modern floating-point representation.

Fig. 1 is an overview of the main building blocks of the Z3.
The first relevant feature is the separation between processor and
memory. The Z3 consists of a binary memory unit (capable of
storing 64 floating-point numbers), a binary floating-point proces-
sor, a control unit, and I/O devices. Memory and the arithmetical
unit are connected through a data bus, which transmits the expo-
nent and significand of the floating-point representation. The
control unit contains the microsequencers needed for each in-
struction. Control lines going from the control unit to the proces-
sor, the memory, and the I/O devices enforce the correct synchro-
nization of all units. The tape reader provides the opcode of each
instruction as well as the address for memory accesses. The I/O
devices are connected through a data bus to the computing unit.

Fig. 1. The building blocks of the Z3.

Floating-Point Representation
Fig. 2 shows the representation used in the memory of the Z3. The
first bit is used to store the sign of the number, the following
seven bits for the exponent, and the last 14 bits for the significand
(only the 14 places to the right of the decimal point). The bits of
the exponent are called Part A of the number and are denoted by
a6, . . . , a0. The bits of the significand are called Part B of the
number and are denoted by b0, b–1, . . . , b–14. The exponent is
coded as a two’s complement number. The range of possible val-
ues therefore runs from –64 to 63. The significand is stored in
normalized form, that is, the first digit before the decimal point
(b0) must always be a one (Donald Knuth attributes the invention
of normalized floating-point numbers to Zuse.5). This digit does
not need to be stored (and therefore does not appear in Fig. 2), so
that the effective range of the numbers in the memory unit is
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equivalent to a significand of 15 bits. However, there is a problem
with the number zero, which cannot be expressed using a nor-
malized significand. The Z3 uses the convention that any signifi-
cand with exponent –64 is to be considered equal to zero. Any
number with exponent 63 is considered infinitely large. Opera-
tions involving zero and infinity are treated as exceptions, and
special hardware monitors the numbers loaded in the processor in
order to set the exception flags (see below). With this convention,
the smallest number representable in the memory of the Z3 is 2

–63

= 1.08 × 10
–l9

, and the largest is 1.999 × 2
62

 = 9.2 × 10
18

. The
arguments for computations can be entered as decimal numbers
on the keyboard of the Z3 (four digits). The exponent of the
decimal representation is entered by pushing the appropriate but-
ton in a row of buttons labeled –8, –7, ..., 7, 8. The original Z3
could accept input only between 1 × 10

–8
 and 9,999 × 10

8
. Zuse’s

reconstruction of the Z3 for the Deutsches Museum in Munich
provides enough buttons for larger exponents. With this arrange-
ment, the whole numerical capacity of the machine can be re-
flected on the acceptable input. The same can be said of the out-
put. However, the Z3 does not print the numerical results the pro-
gram produces. A single number is displayed on an array of lamps
representing the digits from zero to nine. The largest number that
can be displayed is 19,999. The smallest is 00001. The largest
exponent that can be displayed is +8, the smallest –8.

Fig. 2. The floating-point representation in memory.

Instruction Set
The program for the Z3 is stored on punched tape. One instruction
is coded using eight bits for each row of the tape. The instruction
set of the Z3 consists of the nine instructions shown in Table 1.
There are three types of instructions: I/O, memory, and arithmeti-
cal operators. The opcode has a variable length of two or five bits.
Memory operations encode the address of a word in the lower six
bits, that is, the addressing space has a maximum size of 64
words, as mentioned above.

The instructions on the punched tape can be arranged in any
order. The instructions Lu and Ld (read from keyboard and dis-
play result, respectively) halt the machine, so that the operator has
enough time to input a number or write down a result. The ma-
chine is then restarted and continues processing the program.

The instruction most conspicuously absent from the instruction
set of the Z3 is conditional branching. Loops can be implemented
by the simple expedient of bringing together the two ends of the
punched tape, but there is no way to implement conditional se-
quences of instructions. The Z3 is therefore not a universal com-
puter in the sense of Turing.

Number of Cycles
The Z3 is a clocked machine. Each cycle is divided into five
stages called I, II, III, IV, and V. The instruction in the punched
tape is decoded in Stage I of a cycle. The two basic arithmetical

operations of the machine are addition and subtraction of expo-
nents and significands. The operations can be executed in the first
three stages of each cycle. Stages IV and V are used to prepare
arguments for the next operation or to write back results.

TABLE 1
INSTRUCTION SET AND OPCODES OF THE Z3

The instructions implemented in the Z3 require the following
number of cycles:

Multiplication: 16 cycles
Division: 18 cycles
Square root: 20 cycles
Addition: 3 cycles
Subtraction: 4 or 5 cycles, depending on the result
Read keyboard: 9 to 41 cycles, depending on the exponent
Display output: 9 to 41 cycles, depending on the exponent
Load from memory: 1 cycle
Store to memory: 0 or 1 cycle

According to Zuse, the time required for a multiplication was
three seconds. Considering that a multiplication operation needs
16 cycles, one can estimate that the operating frequency of the
Z3 was 16/3 ≅ 5.33 Hz. It is a curious coincidence that the gate-
level simulation of the Z3 that my students implemented using a
personal computer also required around three seconds for a
multiplication.

The instruction most conspicuously
absent from the instruction set of the

Z3 is conditional branching.

The number of cycles needed for the read and display instruc-
tions is variable, because it depends on the exponent of the argu-
ments. Since the input has to be converted from decimal to binary
representation, the number of multiplications needed with the
factor 10 or 0.1 is dictated by the decimal exponent (see below).

Addition and subtraction require more than one cycle because,
in the case of floating-point numbers, care has to be taken to set
the size of the exponent of both arguments to the same value. This
requires some extra comparisons and shifting.

A number can be stored in memory in zero cycles when the re-
sult of the last arithmetical operation can be redirected to the de-
sired memory address. In this case, the cycle needed for the store
instruction overlaps the last cycle of the arithmetical operation.
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Programming Model
It is very important to describe the programming model of the Z3,
that is, the part of the machine visible to the programmer. From
the point of view of the software, the Z3 consists of 64 memory
words that can be loaded into two floating-point registers, which I
simply call R1 and R2. These two registers contain the two argu-
ments of arithmetical operations requiring them. The programmer
can write any sequence of instructions, but has to keep in mind
the state of the machine’s registers.

The important point to remember is the following: The first
load operation in a program (Pr z) transfers the contents of ad-
dress z to R1. Any other subsequent load operation transfers a
word from memory to R2. A read keyboard instruction loads the
numerical input into R1 and clears R2, which is used to hold tem-
porary values during the transformation of the decimal input to a
binary representation.

Arithmetical operations do not specify their arguments in the
opcode. Their implicit semantics are the following:

Multiplication: R1:=R1 ¥ R2
Division: R1:=R1/R2
Addition: R1 :=R1+R2
Subtraction: R1:=R1-R2
Square root: R1:=sqrt(R1)

R2 is set to zero after an arithmetical instruction, whereas the
result is stored in R1. Subsequent load operations refer to R2. The
store and display instructions always refer to R1, which also con-
tains the result of the previous arithmetical operation. After a
store or a display operation, R1 is set to zero (by disconnecting its
relays, which then become ready to accept a new value). The next
load operation refers to R1.

An example is better than many additional remarks to clarify
the programming model of the Z3. Assume that we want to com-
pute a polynomial using Horner’s method:

x a x a xa a2 3 4 1+ + +c he j .

Assume further that we have stored the constants a4, a3, a2, a1 in
the addresses four, three, two, and one of the memory unit. The
value z is stored in address five. The program that performs the
desired computation is the following:

Pr 4 load a4 in R1
Pr 5 load x in R2
Lm multiply R1 and R2, result in R1
Pr 3 load a3 in R2
Lsl add R1 and R2, result in R1
Pr 5 load x in R2
Lm multiply R1 and R2, result in R1
Pr 2 load a2 in R2
Lsl add R1 and R2, result in R1
Pr 5 load x in R2
Lm multiply R1 and R2, result in R1
Pr 1 load a1 in R2
Ls1 add R1 and R2, result in R1
Ld display result

After the last instruction has been executed, the processor is reset
to its initial state. A new program sequence can then be started.

Block Diagram of the Z3
In this section, I take a closer look at the structure of the Z3 and
describe its main building blocks in more detail. The main issue
is how to enforce the correct synchronization of the available
components.

The Processor
Fig. 3 shows a simplified representation of the arithmetical unit of
the Z3. There are two parts: The left side is used for operations
with the exponents of the floating-point numbers, the right side
for operations with the significands. Af and Bf are registers used
to store the exponent and significand of what, from the program-
mer’s point of view, is R1. I will refer to R1 as the register pair
<Af,Bf>. The register pair <Ab,Bb> stores the exponent and sig-
nificand of R2. The pair <Aa,Ba> contains the exponent and the
significand of a third temporary floating-point register invisible to
the programmer. The two arithmetic logic units (ALUs) A and B
are used to add or subtract exponents and significands, respec-
tively. The result of the operation in the exponent part is put into
Ae. In the significand part, the result of the operation is put into
Be. The pair <Ae,Be> can be considered an internal register in-
visible to the programmer. In Part B, a multiplexer allows selec-
tion of Ba or the output of the ALU as the result of the operation.
The multiplexer is controlled by a relay Bt (if Bt = 0, then Be is
set equal to Ba).

Fig. 3. The registers and data path.

The small boxes labeled Ea, Eb, Ec, Ed, Ef, Fa, Fb, Fc, Fd, and
Ff are switches that open or close the data bus. If the contents of
register Af are to be transferred to Aa, for example, the box of
relays Ea is set to one and the result is Aa:=Af. As can be seen
from Fig. 3, the contents of Af can be transferred to Aa or Ab,
whereas the contents of Ae can be transferred to any of Aa, Ab, or
Af according to the state of the switches. The structure of Part B
of the arithmetical unit is very similar, but in addition to the mul-
tiplexer controlled by the relay Bt, there is also a shifter between
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Bf and Ba and a shifter between Bf and Bb. The first shifter can
displace the significand up to two positions to the right and one
position to the left. This amounts to a division of Bf by four or a
multiplication with the constant two. The second shifter can dis-
place the significand in Af from one to 16 positions to the right
and from one to 15 positions to the left. These shifts are needed
for addition and subtraction of floating-point numbers. Multipli-
cation and division with powers of two can therefore be per-
formed when the operands for the next arithmetical operation are
fetched and, in this sense, do not consume time.

The number of bits used in the registers is as follows:

Af 7 bits Bf 17 bits
Aa 8 Ba 19
Ab 8 Bb 18
Ae 8 Be 18

As can be seen from this list, Ae uses one extra bit to handle the
addition of the exponents of the arguments. Part B of the proces-
sor uses two extra bits for the significands (b–15 and b–16) and
makes explicit b0, which is not stored in memory. The extra bits at
positions –15 and –16 are included to increase the precision of the
computations. Therefore, the total number of bits needed to store
the result of an arithmetical operation in Bf is 17 bits. Registers
Ba and Bb require more extra bits (ba2, ba1, and bb1) to handle
intermediate results of some of the numerical algorithms. In par-
ticular, the square root algorithm can lead to partial computations
in Ba requiring three bits to the left of the decimal point.

The basic primitive operation of the data path is the addition or
subtraction of exponents or significands. When the relay As or Bs
is set, the negation of the second argument (Ab or Bb) is fed into
the ALU. Therefore, if the relay As is set to one, the ALU in Part
A subtracts its arguments, otherwise they are added. The same is
true for Part B and the relay Bs. The constant of one is needed to
build the two’s complement of a number.

Assume that two numbers with the same exponent are to be
added. The first exponent is stored in Af, the second in Ab.
Since they are equal, no operation has to be performed on this
side of the machine. In Part B, the significand of the first num-
ber is stored in Bf and the significand of the second in Bb. The
first step consists of loading Ba with Bf by setting the relay box
Fa to one. The addition is performed next, the relay Bt is set to
one, and so the result Ba + Bb is assigned to Be. The relay box
Ff is now set to one, and the result is stored in Bf. As one can
see, the information can move between registers and so flow
through the data path. The computer architect has to provide the
correct sequence of activations of the relay boxes in order to get
the desired operation. This is done in the Z3 using a technique
very similar to microprogramming.

The Control Unit
Fig. 4 shows a more detailed diagram of the control unit and of
the I/O panels. The circuit Pa decodes the opcode of the instruc-
tion read from the punched tape. If it is a memory instruction,
circuit Pb sets the address bus to the value of the lower six bits of
the opcode. The control unit determines the correct microse-
quencing of the instructions. There are special circuits for each of
the operations in the instruction set.

Circuit Z represents the panel of buttons used to enter a deci-
mal number in the machine. Only one button in each of the four
columns can be activated. The exponent is set by pressing one of
the buttons labeled –8 to 8 in circuit K. The output display is very
similar to the input panel, but here lamps illuminate the appropri-
ate decimal digits, the exponent of the number (circuit Q), as well
as its sign. Note that there is a fifth digit for the output (which can
be only one or zero).

Fig. 4. The control unit and I/O panels.

Once a decimal number has been set, a data bus transmits the
digits to register Ba, and a complex series of operations is started.
The decimal input must be transformed into a binary number. This
requires a chain of multiplications, which is longer according to
the absolute magnitude of the exponent. If the exponent is zero,
the whole transformation requires nine cycles, but if it is -8, the
operation requires 9 + 4 × 8 = 41 cycles.

There are a lot of details that the
engineer designing the “microprogram”

must keep in mind, otherwise short
circuits can destroy the hardware.

Microcontrol of the Z3
The heart of the control unit is made up of its microsequencers.
Before I describe the way they work, it is necessary to take a
closer look at the chaining of arithmetical instructions in the Z3.
Fig. 5 shows the main idea. Each cycle of the Z3 is divided into
five stages. Stages IV and V are used to move information around
in the machine. During Stages I, II, and III, an addi-
tion/subtraction is computed in Part A and another in Part B of the
Z3. I call this the “execute” phase of an instruction. A typical
instruction fetches its arguments, executes, and writes back the
result. Zuse took great care to save execution time by overlapping
the fetch stage of the next instruction with the write-back stage of
the current one. One can think of an execution cycle as consisting
of just two stages, as shown in Fig. 5, where the first two cycles
of a series of instructions have been labeled. I have adopted this
convention in the tabular diagrams of the numerical algorithms
discussed later in this article.

The microsequencing is done by special control wheels. There
is one for the multiplication algorithm, another to control division,
and yet another for the square root instruction. The moving arm
shown in Fig. 6 starts moving clockwise as soon as the control
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unit decodes the corresponding instruction. In each cycle, the arm
moves from one position to the next. The arm conducts electricity
and activates the circuits with which it comes into contact. In the
example shown in Fig. 6, the moving arm sets the relay box Ea to
one in the first cycle. This leads to the transfer of the contents of
register Af into Aa. In the next cycle, the relay boxes Ec and Fc
are activated. In this way, the results of the operations in Parts A
and B are written back into the registers Aa and Ba, respectively.
As one can see, such control wheels provide a comfortable plat-
form for modifying the exact sequence of events during an opera-
tion. They correspond to the microsequencers used today in mod-
ern microprocessors. I stop short of calling them a form of mi-
croprogramming, because in this case the microsequence has been
hardwired, but it is obvious that microsequencing and micropro-
gramming are closely related.

Fig. 5. The execution pipeline of the Z3.

Fig. 6. Control wheels for microsequencing.

Extensive use of microsequencing allowed Zuse to simplify the
Z3. Once the basic circuits had been laid out, it was just a matter
of refining the control until optimal sequences of events could be
found. There are a lot of details that the engineer designing the
“microprogram” must keep in mind, otherwise short circuits can
destroy the hardware. The Z1 with its mechanical design was still
more sensitive in this respect than the Z3. Even after it was com-
pleted, there were sequences of instructions that the programmer
had to avoid in order not to damage the hardware. One of those
sequences was inadvertently tried at the Berlin Museum of Tech-
nology and Transportation, which led to slight damaging of the
reconstructed Z1 in 1994.

The Adders
An important feature of the Z3 is the design of the adders, which
compute additions and subtractions using a method called carry
look-ahead. If binary addition is implemented in a straightforward
way, carries have to be passed from one bit position to the next. In

the case of the significand, one would need 16 cycles just for the
transmission of the carry bits. The adders Zuse designed are much
faster than that—they perform an addition or subtraction in Stages
I, II, and III of a single cycle. Subtraction is computed by com-
plementing the second argument and adding an extra digit one at
the lowest bit position.

Consider addition of the registers Ba and Bb. I will refer to the
ith bit of register Bb by bbi or Bb[i], whatever form seems more
convenient. I will use the same notation in the case of other reg-
isters. First of all, a partial result is computed that is the bitwise
XOR of both registers, i.e., bci = bai XOR bbi. A second partial
result is the bitwise AND operation applied to both registers, i.e.,
bai AND bbi. The next operation locates the bit positions at which
a carry is needed. The intermediate results bdi are computed by
using the circuit shown in Fig. 7. Please note that when a bit is
one, the corresponding line carries a current, otherwise the line is
disconnected from the power source (so that no short circuit can
occur). The resting positions of the relays bc1, . . . , bc–16 are the
ones shown in Fig. 7. If bit bci becomes equal to one, the corre-
sponding relay is closed. The final result is bei = bdi XOR bci.
Note that the use of relays makes the propagation of the carries up
to the last bit position needed easier. Since all relays are activated
simultaneously, the carry is not delayed going from one bit posi-
tion to the next.

Fig. 7. Circuit for carry look-ahead.

Numerical Algorithms
In this section, I describe the floating-point algorithms the Z3
uses. They are, without exception, the same as those normally
used in small sequential floating-point processors.6

Floating-Point Exceptions
The problem with floating-point notation is that special conven-
tions have to be used to deal with the number zero. The Z3 solves
this problem and deals with other exceptions (overflow and un-
derflow) by monitoring the value of the exponent after any arith-
metical operation or a load from memory. A special circuit looks
at the state of the bus Ae and captures exceptions. Any number
with exponent –64 is flagged as zero: A relay denoted Nn1 is set
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to one if the number is stored in the register pair <Af,Bf>. If the
number is stored in the register pair <Ab,Bb>, the relay Nn2 is set
to one. In this way, we always know if one or both of the argu-
ments for an arithmetical operation are zero. Something similar is
done for any exponent of value 63 (an infinite number, according
to the convention). In this case, the relays Ni1 or Ni2 are set to
one, according to the register pair in which the number is stored.

Operations involving “exceptional” numbers (zero or infinity)
are performed as usual, but the result is overridden by the snoop-
ing circuit. Assume, for example, that a multiplication is com-
puted and that the first argument is zero (Nn1 is set to one). The
computation proceeds as usual, but in each cycle the snooping
circuit produces the result –64 at the output of the adder of Part A.
It does not matter what operations are performed with the signifi-
cands because the exponent of the result is set to –64, and there-
fore the final result is zero. Division by an infinite number can be
handled in a similar manner. The Z3 can detect undefined opera-
tions such as 0 / 0, ∞ – ∞, ∞ / ∞, and 0 × ∞. In all these cases, the
corresponding exception lamp lights on the output panel, and the
machine is stopped. The Z3 always produces the correct result
when one of the arguments is zero or ∞ and the other is a number
within bounds. This was not the case for the Z1. Zuse thought of,
but did not implement, exception handling in the Z1. The machine
could not correctly perform some computations involving zero.16

An additional circuit looks at the exponent of the result at the
output of the exponent’s adder. If the exponent is greater than or
equal to 63, overflow has occurred and the result must be set to ∞.
If the exponent is lower than –64, underflow has occurred and the
result must be set to zero. To do this, the appropriate relay (Nn1 or
Ni1) is set to one.

Zuse managed to implement exception handling using just a few
relays. This feature of the Z3 is one of the most elegant in the whole
design. Many of the early microprocessors of the 1970s did not
include exception handling and left it to the software. Zuse’s ap-
proach is sounder, since it frees programmers from the tedium of
checking the bounds of their numbers before each operation.

Addition and Subtraction
In order to add or subtract two floating-point numbers x and y,
their representation must be reduced to the same exponent. After
this has been done, only the significands have to be added or sub-
tracted. If the exponents are different, the significand of the
smaller number is shifted to the right as many places as necessary
(and its exponent is incremented correspondingly to keep the
number unchanged) until both exponents are equal. It can, of
course, happen that the smaller number becomes zero after 17
shifts to the right.

The signs of the two numbers are compared before deciding on
the type of operation to be executed. If an addition has been re-
quested and the signs are the same, the addition is performed. If
the signs are different, a subtraction is executed. If a subtraction
has been requested and the signs are different, an addition is exe-
cuted. If the signs are the same, the subtraction is executed. A
special circuit sets the sign of the final result according to the
signs of the arguments and the sign of the partial result.

Addition and subtraction are controlled by a chain of relays
(not by a control wheel), since the maximum number of cycles
needed is low. Fig. 8 shows the synchronization required for the
addition of two numbers. Initially, the arguments for the addition

are stored in the register pairs <Af,Bf> and <Ab,Bb>. In the first
cycle, the exponents are subtracted. In Cycle 2, the significand
with the larger exponent is loaded into register Ba, and the sig-
nificand with the smaller exponent is loaded into register Bb. The
significand in register Bb is shifted as many places to the right as
the absolute value of the difference of the exponents (exception
handling takes care of the case in which the smaller number be-
comes zero after the shift). In Stages I, II, and III of Cycle 2, the
significands are added, and finally the processor tests if the result
is greater than two. If this is the case, the significand is shifted
one position to the right and the exponent is incremented by one.
Note that the test “if (Be ≥ 2)” in Part A of the arithmetical unit is
done after Be has already been computed in Part B during Stages
I, II, and III of Cycle 2.

Zuse managed to implement exception
handling using just a few relays. This

feature of the Z3 is one of the most
elegant in the whole design.

In the case of a subtraction, four or five cycles are needed. Fig.
9 shows the synchronization required for a subtraction. The first
two cycles are almost identical to the first two cycles of the addi-
tion algorithm, but now the significands are subtracted. Cycle 3 is
executed only when the difference of the significands is negative.
The effect of Cycle 3 is just to make the significand of the result
positive. Cycle 4 is very important: The difference of two nor-
malized significands can have many zeros in the first bit positions
to the left. The result is normalized by shifting Be to the left as
many places as necessary (this is done with the shifter between
the relay box Fd and register Bb). The number of one-bit shifts is
subtracted from the exponent in Part A of the processor. In Cycle
5, the result is stored in the register pair <Af,Bf>.

Fig. 8. The three cycles needed for the addition algorithm. The argu-
ments for the addition are stored in the register pairs <Af,Bf> and
<Ab,Bb> before the operation is started.

Multiplication
The multiplication algorithm of the Z3 is like the one used for
decimal multiplication by hand, that is, it is based on repeated
additions of the multiplicator according to the individual digits of
the multiplicand. At the beginning of the algorithm, the first ar-
gument is stored in the register pair <Af,Bf>. The second argu-
ment is stored in the register pair <Ab,Bb>. The temporary regis-
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ter pair <Aa,Ba> is set to zeroes. Fig. 10 shows the microse-
quencing produced by the multiplication wheel of the control unit.
The algorithm takes 16 cycles to run. Note that only the bits of the
multiplicand from position –14 to position zero are used. The
exponents are added in the first cycle and the result just loops
afterward in Part A of the arithmetical unit. The significands are
handled in Part B of the unit. Register Ba contains the partial
result of the computation. The basic multiplication loop has the
following form:

Ba := Be / 2
Be := Ba + Bb × (ith bit of Bf)

for i = –14, . . ., 0. The partial result Be is shifted one position to
the right to produce Ba:= Be/2. This is done with the shifter con-
nected to the relay box Fc.

Fig. 9. The four-five cycles needed for the subtraction algorithm. The
first argument is stored in the register pair <Af,Bf> and the second in
<Ab,Bb> before the operation is started.

The result of the multiplication is a number 1 < r < 4 (for ar-
guments within bounds). In the last cycle, there is a check to see if
r > 2. If this is the case, the result is shifted one position to the
right and a one is added to the exponent of the result.

Division
The division algorithm is similar to the multiplication algorithm,
but subtraction is used repetitively instead of addition. At the
beginning of the algorithm, the dividend is stored in the register
pair <Af,Bf>. The divisor is stored in the register pair <Ab,Bb>.
The temporary register pair <Aa,Ba> is set to zeroes. Fig. 11
shows the microsequencing produced by the division wheel of the
control unit. The algorithm takes 18 cycles to run.

The main idea of the algorithm is very simple. The exponent of
the result is obtained by subtracting the exponents of dividend and
divisor. Now for the significand: Assume that we want to compute
x/y for the significands x and y. Since we are dealing with nor-
malized numbers, the first digit of the result is one if x > y and
zero if x < y. In the first case, we set the first digit of the result to

one and compute the remainder, which is x - y. The remainder is
divided recursively by y. To do this, it is shifted one position to
the left, and the new result bit is stored at position [–1] of register
Bf (in this way nullifying the effect of the shift). If the result bit is
zero, the remainder is just x, and the recursive division is contin-
ued as in the first case.

Fig. 10. The 16 cycles needed for the multiplication algorithm. The ith
bit of register Bf is denoted by Bf[i]. The first argument is stored in
the register pair <Af,Bf> and the second in <Ab,Bb> before the opera-
tion is started.

The basic division loop has the following form:

Ba : = 2 × Be
if (Ba–Bb > 0) then Be := Ba–Bb, Bf[i] := 1

else Be := Ba        Bf[i] := 0

for i = 0, . . ., –14. The partial result Be is shifted one position to
the left to produce Ba := 2 × Be. This is done with the shifter con-
nected to the relay box Fc.

The result of the division of significands is a number ½ < r < 2.
This condition is tested in Cycles 17 and 18. If r < 1, a one is
subtracted from the exponent, and the result is shifted one posi-
tion to the left in order to get a normalized number.

Square Root Extraction
The square root algorithm is the jewel in the crown of the Z3. Fig.
12 shows the microsequencing required during the 20 cycles
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needed to compute the square root of a number. The argument for
the operation is stored in the register pair <Af,Bf>. The register
pair <Aa,Ba> is initialized to zeroes. The algorithm computes the
square root of numbers with an even exponent. If the exponent is
an odd number, the significand is shifted one place to the left, and
the exponent is decremented by one. The final exponent
(computed in Cycle 19) is half this initial exponent.

Fig. 11. The 18 cycles needed for the division algorithm.  The ith bit of
register Bf is denoted by Bf[i]. The dividend is stored in the register
pair <Af,Bf> and the divisor in <Ab,Bb> before the operation is
started.

The main idea of the classical algorithm is to reduce the square
root operation to a division. If we want to compute the square root
of x, we need a number Q such that x/Q = Q. The result Q is built
sequentially by setting the ith bit to one and then testing whether
the condition x > Q

2
 still holds. If this is not the case, the ith bit

must be set to zero.
Assume that we have already computed from bit zero to bit

–i + 1 of the final result. Denote by Q–i+l the significand

Q–i+1 = Bf[0] × 2
0
 + Bf[–1] × 2

–1
 + … + Bf[–i + 1]2
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Define t–i using the expression
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This can be written as
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where we have used the recursive definition
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i it x Qe j.
Simplifying the last expression, we finally get:

t–i = 2t–i+1 – q–i(2Q–i+1 + 2
–i
q–i)

If t–i is positive for q–i = 1, we set bit –i of the final result to one,
i.e., Bf[–i]:=1. If t–i is negative, we set Bf[–i]:=0. The recursive
computation is started with t0 = x. Q–i+1 represents at each step the
partial result contained in register Bf. Bit –i is tentatively set to
one, and the sign of t–i is tested. The basic loop of the square root
algorithm for bit -i has the following form:

Ba := 2 × Be
Bb := 2 × Bf
Bb[–i] := 1
if (Ba - Bb > 0) then Be := Ba-Bb, Bf[–i] := 1

    else Be := Ba,   Bf[–i] := 0

The square root algorithm is the
jewel in the crown of the Z3.

All bits of register Bf are used for the computation of the
square root. If the original number lies within bounds, the result is
also within bounds.

Read and Display Instructions
The two most complex instructions of the Z3 are those related to
the input and output of decimal numbers. A decimal number of
four digits entered through the keyboard is first converted into a
binary integer. This is done by reading each digit sequentially,
transforming it into a binary number, and storing it in the bits
Ba[–10], Ba[–11], Ba[–12], and Ba[–13] of register Ba. The num-
ber in register Ba is multiplied by 10, and the procedure is re-
peated for the other digits. After four iterations, the decimal input
has been transformed to a binary number (the exponent of the
binary representation is formed indirectly via shifts resulting from
multiplication by 10). The difficult part is handling the exponent.
If the exponent e is positive, the significand has to be multiplied e
times with 10. If it is negative, it must be multiplied e times
with 0.1. Multiplying with 10 is relatively easy: The significand in
Be can be shifted one bit to the left and then stored in Ba (i.e.,
Ba := 2 × Be) . At the same time, Be can be shifted three places to
the left and can be stored in Bb (i.e., Bb := 8 × Be). The addition
of Ba and Bb then provides the desired result: the multiplication
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of the original number in Be with the constant 10. The process
takes four cycles for each multiplication, that is, 32 cycles for the
decimal exponent +8. Since a read operation needs a minimum of
nine cycles, this means that a decimal number with exponent +8 is
read in 41 cycles.

Fig. 12. The 20 cycles needed for the square root algorithm. The ith
bit of registers Bf and Af are denoted by Bf[i] and Af[ i], respectively.
The argument is stored in the register pair <Af,Bf> before the opera-
tion is started.

In the case of negative exponents, multiplication with the con-
stant 0.1 is performed using the shifters and the adders as well. This
multiplication is somewhat more complex, because 0.1 is a periodic
number in the binary system. The description of the microsequenc-
ing used would take us too far away from the main topics, so I omit
it here. (It can be found in Zuse’s patent application.14)

The display instruction works by multiplying or dividing itera-
tively by 10. If the binary exponent of the number in register R1 is

positive, the number is multiplied with 0.1 as many times as
needed to make the binary exponent equal to two and until the
first left four bits of register Bf contain a number between zero
and nine (0000 and 1001). This is the decimal digit that can be
displayed in the next column of the output panel. The number is
subtracted from the significand in Bf, and the process continues
for the following digits. If the binary exponent of the number in
register R1 is negative, the process is similar, but multiplications
with the constant 10 are used.

Complete Architecture of the Z3
I will now explain the detailed diagram of the Z3 shown in Fig. 13.

I discussed the control unit and the I/O panels earlier. Notice
that the four decimal digits of the input keyboard are transferred
to register Ba using the relay boxes Za, Zb, Zc, and Zd, which are
activated one after the other.

The relay boxes Eg and Ei are used to set some useful con-
stants directly into the exponent registers (+13 and –4, which are
used for the numerical base conversions). The shifter Ee between
register Af and register Aa is used for the square root algorithm.
The exponent of the result (Aa) becomes half the exponent (Af) of
the original number.

Ah1 is a relay acting as a flip-flop. When it is set to zero, the
register pair <Af,Bf> is accessed by load operations. When it is
set to one, the register pair <Ab,Bb> is accessed. This relay is
reset to zero by the control line ai. The control lines al, aj, bl, and
bj are used to clear the registers Af, Ab, Bf, and Bb when needed.

Fig. 13. The complete architecture of the Z3.
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The box labeled “zero, infinite” below Ae represents the circuits
for exception handling. They snoop permanently on the data bus
(results of operations and data from memory) and raise the corre-
sponding exception flags when needed. The shifter below Be is used
to displace the significand one bit to the right. This provides the
normalization needed for the significand whenever Be ≥ 2.

Fp and Fq are the relays that control the number and direction
of one-bit shifts in the shifter below the relay boxes Fc and Fa.
Fh, Fi, Fk, Fl, and Fm have the same function in relation to the
other shifter. Using these five bits, the numbers between -16 and
15 can be represented, and this is also the range of the second
shifter. When such a shift is performed, the number represented
by the relays Fh to Fm is transferred through the relay box Bn to
register Ab in order to modify the exponent of the result. If the
number is shifted 10 positions to the left, then +10 is subtracted
from the exponent of the result. Such drastic shifts are needed
mostly after subtractions.

Look again at the diagram of the Z3. Everything makes sense
now and looks as conventional as any modern small floating-
point processor. It is indeed amazing how Zuse was able to find
the adequate architecture right from the beginning. The Z3
processor employs just 600 relays; the memory needs three
times as much. By having to optimize the design and by having
to save hardware everywhere, Zuse was forced to think and
rethink the logical structure of his machine. He was not allowed
the luxury of the almost unlimited funding allocated by the U.S.
military for the development of the ENIAC or by IBM for the
Mark I. He was all alone. While this may have worked to his
advantage from the conceptual side, it may also have worked to
his disadvantage, considering the negligible impact that the Z1
and Z3 had on the emerging U.S. computer industry after World
War II.13

The Invention of the Computer
The main defect of the Z3 was the absence of a conditional branch
in the instruction set. When the program is stored on punched
tape, a possible fix is to include multiple tapes and a mechanism
to switch between them (as was done with the Harvard Mark I).
Another possibility is having a “program counter,” so that the tape
can be advanced or rewound on demand.

Sometimes the dividing line between calculating machines
and universal computers is drawn by differentiating between
machines with externally or internally stored programs. I have
argued elsewhere10 that this is not a valid criterion. An external
program can work as an interpreter of numerical data. The ex-
ternal program becomes a fixed part of the processor, and the
data become the program, much in the same way as a universal
Turing machine works as an interpreter. I have argued that what
is needed for universal computation is a minimal instruction set
and indirect addressing.11 Indirect addressing can be simulated
by writing self-modifying programs, so that the instruction set
becomes the defining criterion. A machine with enough ad-
dressable memory and an accumulator and that is capable of
executing the instructions CLR (clear), INC (increment),
LOAD, STORE, and BZ (branch if zero) is a universal com-
puter. In this sense, the Z1 was not a fully fledged computer, but
neither were any of the other early machines. The ABC was a
special-purpose machine for solving sets of linear equations by
Gaussian elimination; the Harvard Mark I lacked conditional

branching, although it featured loops; the ENIAC was not even
programmable through software—the building blocks had to be
hardwired in dataflow fashion. Conditional branching was
available in the ENIAC only in a limited way, and self-
modifying programs were, of course, out of the question.

TABLE 2
COMPARISON OF ARCHITECTURAL FEATURES

TABLE 3
SOME ADDITIONAL ARCHITECTURAL FEATURES

Tables 2 and 3 show the most relevant information about the
early computing machines mentioned earlier. As should be clear
from the tables, none of the early computing machines fulfills
all the necessary requirements for a universal computer. I also
include the Mark I machine built in Manchester from 1946 to
1948, because as far as I know this was the first machine to fit
my definition of a universal computer. The Mark I was built
under the direction of F.C. Williams and T. Kilburn. This ma-
chine stored its program in random-access digital memory im-
plemented with CRT tubes. All necessary instruction primitives
were available (in modified form), and although it lacked indi-
rect addressing, self-modifying programs could be written. The
first program ran in June 1948 and calculated the highest proper
factor of a large number.7 In September 1948, Turing was ap-
pointed as a reader in mathematics in Manchester and wrote
some programs for the first universal computer in the world. His
vision of universal computation published in 1936, the same
year in which the storage unit of the Z1 was completed, had at
last become a reality. Tables 2 and 3 are emphatic: The inven-
tion of the computer was a collective achievement encompass-
ing two continents and 12 years.
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