Konrad Zuse’s Legacy:
The Architecture of the Z1 and Z3

RAUL ROJAS

This paper provides a detailed description of the architecture of the Z1 and
Z3 computing machines that Konrad Zuse designed in Berlin between 1936
and 1941. The necessary basic information was obtained from a careful
evaluation of the patent application Zuse filed in 1941. Additional insight was
gained from a software simulation of the machine’s logic. The Z1 was built
using purely mechanical components; the Z3 used electromechanical relays.
However, both machines shared a common logical structure, and their pro-
gramming model was the same. | argue that both the Z1 and the Z3 pos-
sessed features akin to those of modern computers: The memory and proc-
essor were separate units, and the processor could handle floating-point
numbers and compute the four basic arithmetical operations as well as the
square root of a number. The program was stored on punched tape and was
read sequentially. In the last section of this paper, | put the architecture of
the Z1 and Z3 into historical perspective by offering a comparison with com-
puting machines built in other countries.

Introduction
K onrad Zuse is popularly recognized in Germany as the famablecalculating machine in the world. Of course the old debate
ther of the computer, and his Z1, a programmable automawill not be closed with this paper, but | want to show here just
ton built from 1936 to 1938, has been called the first computer ihow advanced the machines Zuse built were when considered
the world. Other nations reserve this honor for one of their owrirom the viewpoint of modern computer architecture and com-
scientists, and there has been a long and often acrimonious debpteged with other designs of that time.
on the issue of who is the true inventor of the computer. Some- The Berlin Polytechnic student Zuse started thinking about
times the discussion is preempted by specifying in full detail theomputing machines in the 1930s. He realized that he could con-
technological features of a specific machine. The Electronic Nustruct an automaton capable of executing a sequence of arithmeti-
merical Integrator and Computer (ENIAC), for example, has beeral operations like those needed to compute mathematical tables.
called the first “large-scale general-purpose electraeoimputer Coming from a civil engineering background, he had no formal
in the world.® The ENIAC was built at the Moore School of training in electronics and was not acquainted with the technology
Electrical Engineering of the University of Pennsylvania fromused in conventional mechanical calculators. This nominal deficit
May 1943 to 1945. It solved its first problem in December 1945vorked to his advantage, however, because he had to rethink the
and was officially presented in February 1946. Another contendexhole problem of arithmetic computation and thus hit on new and
for the title of the first computer is the Mark I, built by Howard original solutions.
Aiken at Harvard University between 1939 and 1944. The Mark | Zuse decided to build his first experimental calculating ma-
was an electromechanical machine, not of the all-mechanical nahine exploiting two main ideas:
ture of previous computing devices and not built with the elec-
tronics available at the timleThe machine John Atanasoff built
(later called the ABC) at lowa State College from 1938 to 1942
used vacuum tubes but was restricted to the addition and subtrac-
tion of vectors and had a structure inappropriate for universa¥ears before John von Neumann explained the advantages of a
computatiorf. In direct contrast to these three machines, the Zomputer architecture in which the processor is separated from
was more flexible and was designed to execute a long and modifihe memory, Zuse had already arrived at the same solution.
able sequence of instructions contained on a punched tape. Zusgléwever, it must be said that Charles Babbage had the same
machines, the Z3 and the Z4, were not electronic and were ¢flea in the previous century when he designed his Analytical
reduced size. Since the Z3 was completed and was successfuiyngine. In 1936, Zuse completed the memory of the machine he
working prior to the Mark |, it has been called the fpgigram- had planned. (Zuse called it ti8peicherwerkstorage mecha-

the machine would work with binary numbers
the computing and control unit would be separated from the
storage.

1058-6180/97/$10.0@ 1997 IEEE

IEEE Annals of the History of Computjngl. 19, No. 2, 1997 5

Konrad Zuse’s Legacy

nism)—the ternSpeicheris still used in German instead of the detail. In order to avoid awkward sentences, | will refer to the Z3
anthropomorphic ternmemorythat von Neumann introduced; in the present tense.
Babbage used the terstore) It was a mechanical device but
not of the usual type. Instead of using gears (as Babbage h&lock Structure
done in the previous century), Zuse implemented logical antthe 73 is a floating-point machine. Whereas other early comput-
arithmetical operations using sliding metallic rods. The rodsng automatons like the Mark I, the ABC, and the ENIAC worked
could move in only one of two directions (forward or backward)with fixed-point numbers, Zuse decided very early on to adopt
and therefore were appropriate for a binary machinghe what he called “semilogarithmic” notation, which corresponds to
processor of the Z1 was completed a few months after the stofhe modern floating-point representation.
age unit, using the same kind of technology. It worked in con- Fig. 1 is an overview of the main building blocks of the Z3.
cert with the memory but was never very reliable. The mainthe first relevant feature is the separation between processor and
problem was the precise synchronization that was needed ifemory. The Z3 consists of a binary memory unit (capable of
order to avoid applying excessive mechanical stress on th&oring 64 floating-point numbers), a binary floating-point proces-
moving parts. It is interesting to point out that in the same yeagor, a control unit, and I/O devices. Memory and the arithmetical
that Zuse completed the memory of the Z1, Alan Turing wroteynit are connected through a data bus, which transmits the expo-
his ground-breaking paper on computable numbers, in which hgent and significand of the floating-point representation. The
formalized the intuitive concept of computability. control unit contains the microsequencers needed for each in-
The Z1, although unreliable, showed that the architectural destryction. Control lines going from the control unit to the proces-
sign was sound and compelled Zuse to start investigating othepr, the memory, and the 1/O devices enforce the correct synchro-
kinds of technology. Following the advice of his friend Helmut nization of all units. The tape reader provides the opcode of each
Schreyer, he considered using electromechanical relays. Zuggstruction as well as the address for memory accesses. The I/O

built an “intermediate” simpler model (the Z2) using a hybrid devices are connected through a data bus to the computing unit.
approach (a processor built out of relays and a mechanical mem-

ory). In 1938, Zuse started building the Z3, a machine consistin punched tape

purely of relays but with the same logical structure as the Z1. |
was ready and operational in 1941, four years before the ENIAC. C%I;tirf)l ';(“merical

. do eyboard

This paper offers a detailed discussion of the architecture of th %5 control —>
Z1 and Z3. Zuse reconstructed the Z1 himself in Berlin during the rg%eer + lines numerical
1980s, and it is now one of the exhibition attractions at the Berlir display
Museum of Transportation and Technology. However, the infor-
mation available describes only the design of the mechanic: address data bus
memory'? Zuse documented the Z3 in his patent application Z- L] bus
391 of 1941, which is rather difficult to decipher due to the non- arithmetical unit
standard notation and terminolofyK.-H. Czauderna’s bodk data bus
about the Z3 is a good source to understand the historical eny (exponent) _
. B . . exponent significand

ronment surrounding Zuse’s inventions but does not describe tt memory registers registers
Z3 in detail. In what follows, since Z1 and Z3 were equivalent (64 words) and ALU | | and ALU
from the logical and functional points of view, | refer only to the
Z3. The main architectural difference between the Z1 and Z3 wa data bus
the fact that the square root operation was left out of the Z1. Thel (significand)

were also minor differences in the number of bits used for arith-
metical operations in the processor (the Z1 used one fewer bit fgig. 1. The building blocks of the Z3.
the mantissa of floating-point numbers) and the number of cycles
needed for each instruction. With this minor caveat and taking-|oating-Point Representation

only the architectural featyres into account, one can speak of tf,_qg_ 2 shows the representation used in the memory of the Z3. The
Z1 and Z3 as nearly equivalent machines. There has been SOR&: it is ysed to store the sign of the number, the following

discu;si?n ta;]s to \'threzrlo:j nott thedre(;:orjstruvti/teclidz\}vree:lllyzcorrgéven bits for the exponent, and the last 14 bits for the significand
sponds fo the origina estroyed during Vvor ar 1. £Use only the 14 places to the right of the decimal point). The bits of

rebuilt the Z1 during the 1980s based on his own recollection
.) . . the exponent are called Part A of the number and are denoted by
and it could well be the case that the final machine ended bein : Co
.. .,8, The bits of the significand are called Part B of the

more similar to the Z3 than the original Z1. However, Zuse states®’

in his memoirs that the basic circuits of the Z1 and Z3 Weré1umber and are,: denoted by, b.,, . . . ,b4 The exponenF 1S
equivalent® and he confirmed this aspect of his work in a privateCOded as a two’s complement number. The_ range of possuble vgl-
interview. ues therefore runs from —64 to 63. The significand is stored in

normalizedform, that is, the first digit before the decimal point
Architectural Overview of the Z1 and Z3 (b,) must always be a one (Donald Knuth attributes the invention
This section summarizes the most relevant architectural features normalizedfloating-point numbers to Zusg. This digit does
of the Z3. The paper moves from the simple to the complex: Firshot need to be stored (and therefore does not appear in Fig. 2), so
| provide an overview of the architecture, then | go into morethat the effective range of the numbers in the memory unit is

6 ¢ IEEE Annals of the History of Computingpl. 19, No. 2, 1997

equivalent to a significand of 15 bits. However, there is a problenoperations of the machine are addition and subtraction of expo-

with the number zero, which cannot be expressed using a nofents and significands. The operations can be executed in the first
malized significand. The Z3 uses the convention that any signifithree stages of each cycle. Stages IV and V are used to prepare
cand with exponent —64 is to be considered equal to zero. An§rguments for the next operation or to write back results.

number with exponent 63 is considered infinitely large. Opera- TABLE 1

tions involving zero and infinity are treated as exceptions, and INSTRUCTION SET AND OPCODES OF THE Z3

special hardware monitors the numbers loaded in the processor T Instract Deserinti Oocod

order to set the exception flags (see below). With this conventior ype fistruction | Pescription peoce

the smallest number representable in the memory of the 7%is 2 1/0 Lu read keyboard | 01 110000

= 1.08x 10 , and the largest is 1.9992 " = 9.2x 10 . The Ld display result | 01 111000
arguments for computations can be entered as decimal numbe { memory | Prz load address z | 11 zgz5z4232221
on the keyboard of the Z3 (four digits). The exponent of the Psz store address z | 10 zg2z524232221
decimal representation is entered by pushing the appropriate bt [, iihmetic | Lm multiplication | 01 001000

ton in a row of buttons labeled —8,_—87, .., 7, 8. Thse original Z& Li division 01 010000
could accept input only betweerx110 ~and 9,99% 10. Zuse’s

reconstruction of the Z3 for the Deutsches Museum in Munict Lw square oot 01 011000
provides enough buttons for larger exponents. With this arrange Lsy addition 01 100000
ment, the whole numerical capacity of the machine can be re Ls; subtraction 01 101000

flected on the acceptable input. The same can be said of the out-

put. However, the Z3 does not print the numerical results the pro- The instructions implemented in the Z3 require the following
gram produces. A single number is displayed on an array of lamgg/mber of cycles:

representing the digits from zero to nine. The largest number that

can be displayed is 19,999. The smallest is 00001. The largestMultiplication: 16 cycles

exponent that can be displayed is +8, the smallest —8. Division: 18 cycles

Square root: 20 cycles

sign exponent significand AddItIOn:- 3 cycles -

5 Subtraction: 4 or 5 cycles, depending on the result
' - ' 96 | ! 41 | % | b—l| b—2| b—3| ff—lﬂ Read keyboard: 9 to 41 cycles, depending on the exponent
: 7 bi] : Display output: 9 to 41 cycles, depending on the exponent
i ' 14 bits Load from memory: 1 cycle

Store to memory: 0 or 1 cycle

Fig. 2. The floating-point representation in memory.

According to Zuse, the time required for a multiplication was
Instruction Set three seconds. Considering that a multiplication operation needs
The program for the Z3 is stored on punched tape. One instructickP cycles, one can estimate that the operating frequency of the
is coded using eight bits for each row of the tape. The instructiod3 was 16/315.33 Hz. It is a curious coincidence that the gate-
set of the Z3 consists of the nine instructions shown in Table 1evel simulation of the Z3 that my students implemented using a
There are three types of instructions: /0, memory, and arithmetPersonal computer also required around three seconds for a
cal operators. The opcode has a variable length of two or five bit§iultiplication.
Memory operations encode the address of a word in the |owWe r S| > mm———————————

bits, that is, the addressing space has a maximum size of 64 The instruction most conspicuously

words, as mentioned above. f he i . fth
The instructions on the punched tape can be arranged in any absent from the instruction set of the

order. The instructions Lu and Ld (read from keyboard and dis- Z3 is conditional branching.
play result, respectively) halt the machine, so that the operator has
enough time to input a number or write down a result. The ma- The number of cycles needed for tead anddisplayinstruc-
chine is then restarted and continues processing the program. tions is variable, because it depends on the exponent of the argu-
The instruction most conspicuously absent from the instructioments. Since the input has to be converted from decimal to binary
set of the Z3 is conditional branching. Loops can be implementegkpresentation, the number of multiplications needed with the
by the simple expedient of bringing together the two ends of théactor 10 or 0.1 is dictated by the decimal exponent (see below).
punched tape, but there is no way to implement conditional se- Addition and subtraction require more than one cycle because,
quences of instructions. The Z3 is therefore not a universal conin the case of floating-point numbers, care has to be taken to set

puter in the sense of Turing. the size of the exponent of both arguments to the same value. This
requires some extra comparisons and shifting.

Number of Cycles A number can be stored in memoryzierocycles when the re-

The Z3 is a clocked machine. Each cycle is divided into fivesult of the last arithmetical operation can be redirected to the de-

stages called 1, Il, lIl, IV, and V. The instruction in the punchedsired memory address. In this case, the cycle needed for the store

tape is decoded in Stage | of a cycle. The two basic arithmeticéitstruction overlaps the last cycle of the arithmetical operation.

IEEE Annals of the History of Computjngl. 19, No. 2, 1997 7

Konrad Zuse’s Legacy

Programming Model After the last instruction has been executed, the processor is reset
It is very important to describe the programming model of the Z3{o its initial state. A new program sequence can then be started.
that is, the part of the machine visible to the programmer. From
the point of view of the software, the Z3 consists of 64 memonB|ock Diagram of the Z3
words that can be loaded into two floating-point registers, which |, this section, | take a closer look at the structure of the Z3 and
simply call R1 and R2. These two registers contain the two argijescribe its main building blocks in more detail. The main issue
ments of arithmetical operations requiring them. The programmeg houw to enforce the correct synchronization of the available
can write any sequence of instructions, but has to keep in mingymponents.
the state of the machine’s registers.

The important point to remember is the following: The first-l-he Processor
load operation in a program (By transfers the contents of ad-
dressz to R1. Any other subsequent load operation transfers
word from memory to R2. A read keyboard instruction loads th
numerical input into R1 andearsR2, which is used to hold tem-
porary values during the transformation of the decimal input to
binary representation.

Arithmetical operations do not specify their arguments in th
opcode. Their implicit semantics are the following:

Fig. 3 shows a simplified representation of the arithmetical unit of
fhe z3. There are two parts: The left side is used for operations
Svith the exponents of the floating-point numbers, the right side
for operations with the significands. Af and Bf are registers used
% store the exponent and significand of what, from the program-
mer’s point of view, is R1. | will refer to R1 as the register pair
%AfBf>. The register pair <Ab,Bb> stores the exponent and sig-
nificand of R2. The pair <Aa,Ba> contains the exponent and the
significand of a third temporary floating-point register invisible to

I\D/I_ul'tlpllc.atlon: Eifiﬁgz the programmer. The two arithmetic logic units (ALUsS) A and B
Aglt;‘igtli(())rr]\.' R 1.'_—R 14R? are used to add or subtract exponents and significands, respec-
Subtraction: RL-=RAR2 tively. The result of the operation in the exponent part is put into

Ae. In the significand part, the result of the operation is put into
Be. The pair <Ae,Be> can be considered an internal register in-
. . I . visible to the programmer. In Part B, a multiplexer allows selec-

R2 is set to zero after an arithmetical instruction, whereas th{laon of Ba or tge gutput of the ALU as the resF:JIt of the operation
result is stored in R1. Subsequent load operations refer to R2. Tbﬁ1e multiplexer is controlled by a relay Bt (if Bt = 0, then Be is
store and display instructions always refer to R1, which also con-y equal to Ba) '

Square root: R1:=sqrt(R1)

) .) . . S
tains the result of the previous arithmetical operation. After a

store or a display operation, R1 is set to zero (by disconnecting it
relays, which then become ready to accept a new value). The ne
load operation refers to R1.

floating-point

An example is better than many additional remarks to clarify ch Fa N F) IF_dll—
shift (<2..1) shift (-16..15)

the programming model of the Z3. Assume that we want to com
pute a polynomial using Horner’s method:

floating-point
register R2

x(a2 +x(ag + xa4)) +a,.

Assume further that we have stored the consi@pta,, a,, a, in

the addresses four, three, two, and one of the memory unit. Tt
valuez is stored in address five. The program that performs th
desired computation is the following:

multiplexer

Pr4 loada,in R1

Pr5 loadxin R2

Lm multiply R1 and R2, result in R1

Pr3 Ioada3 in R2 Part A: operations with the exponents Part B: operations with the significands

Ls, add R1 and R2, result in R1

Pr5 loadxin R2 Fig. 3. The registers and data path.

Lm multiply R1 and R2, result in R1

Prz loada,in R2) The small boxes labeled Ea, Eb, Ec, Ed, Ef, Fa, Fb, Fc, Fd, and
Ls, addR1and R2, resultin R1 Ff are switches that open or close the data bus. If the contents of
Pr5 loadxin R2 register Af are to be transferred to Aa, for example, the box of
Lm multiply R1 and R2, resultin R1 relays Ea is set to one and the result is Aa:=Af. As can be seen
Pr1 loada, in R2 from Fig. 3, the contents of Af can be transferred to Aa or Ab,
Ls; add R1and R2, resultin R1 whereas the contents of Ae can be transferred to any of Aa, Ab, or
Ld display result Af according to the state of the switches. The structure of Part B

8 e |IEEE Annals of the History of Computingpl. 19, No. 2, 1997

of the arithmetical unit is very similar, but in addition to the mul-
tiplexer controlled by the relay Bt, there is also a shifter between

Bf and Ba and a shifter between Bf and Bb. The first shifter can Circuit Z represents the panel of buttons used to enter a deci-
displace the significand up to two positions to the right and onenal number in the machine. Only one button in each of the four
position to the left. This amounts to a division of Bf by four or acolumns can be activated. The exponent is set by pressing one of
multiplication with the constant two. The second shifter can disthe buttons labeled —8 to 8 in circuit K. The output display is very
place the significand in Af from one to 16 positions to the rightsimilar to the input panel, but here lamps illuminate the appropri-
and from one to 15 positions to the left. These shifts are needede decimal digits, the exponent of the number (circuit Q), as well
for addition and subtraction of floating-point numbers. Multipli- as its sign. Note that there is a fifth digit for the output (which can
cation and division with powers of two can therefore be perbe only one or zero).

formed when the operands for the next arithmetical operation are

fetched and, in this sense, do not consume time. exponent of input exponen of result
. . . . i K Q
The number of bits used in the registers is as follows: punched ape controluni @ - @ﬁ)@_., 6 - @?@..A @
e read u
. . o dlsp]ay} D
ﬁf 78b|tS Ef]:.L79 bits o o E 2:};%1;‘&"0" JL Z (eybon R Gesuld

a a o S1ol0l0) QOO

Ab 8 Bb 18 P adiress Sgn v —8 OO®E

Ae 8 Be 18 OOOD ololololo

U OI00[0)] @ee®

As can be seen from this list, Ae uses one extra bit to handle tt l I l I | | |
addition of the exponents of the arguments. Part B of the proce |ddessbus databus data bus
sor uses two extra bits for the significands,{land b, and

makes expliciby, which is not stored in memory. The extra bits at Fig. 4. The control unit and /O panels.

positions —15 and —16 are included to increase the precision of the

computations. Therefore, the total number of bits needed to store

the resuilt of an arithmetical operation in Bf is 17 bits. RegiSter%Iigits to register Ba, and a complex series of operations is started
i i n handl . . ')) T
Ba and Bb require more extra bitsaf, ba,, andbb,) to handle The decimal input must be transformed into a binary number. This

intermediate results of some of the numerical algorithms. In par-_ " . . L o .
ticular, the square root algorithm can lead to partial computationreqUIreS a chain of multiplications, which is longer according to

) P) . . the absolute magnitude of the exponent. If the exponent is zero,
in Ba requiring three bits to the left of the decimal point.

T i . . the whole transformation requires nine cycles, but if #8sthe
The b_aS|c primitive operatlpn of the data path is the addition OE)peration requires 9 +x8 = 41 cycles.
subtraction of exponents or significands. When the relay As or Bs
is set, the negation of the second argument (Ab or Bb) is fed int .
the ALU. Therefore, if the relay As is set to one, the ALU in Part There are a lot of details that the
A subtracts its arguments, otherwise they are added. The same iéngineer designing the “microprogram”
true for Part B and the relay Bs. The constant of one is needed to . . .
build the two's complement of a number. must keep in mind, otherwise short

Assume that two numbers with the same exponent are to be cjrcuits can destroy the hardware.
added. The first exponent is stored in Af, the second in Ab.

Since they are equal, no operation has to be performed on this

side of the machine. In Part B, the significand of the first numMicrocontrol of the Z3

ber is stored in Bf and the significand of the second in Bb. Thd he heart of the control unit is made up of its microsequencers.
first step consists of loading Ba with Bf by setting the relay boxBefore | describe the way they work, it is necessary to take a
Fa to one. The addition is performed next, the relay Bt is set tgloser look at the chaining of arithmetical instructions in the Z3.
one, and so the result Ba + Bb is assigned to Be. The relay bdsig. 5 shows the main idea. Each cycle of the Z3 is divided into
Ff is now set to one, and the result is stored in Bf. As one cafive stages. Stages IV and V are used to move information around
see, the information can move between registers and so flo{¢ the machine. During Stages I, Il, and IIl, an addi-
through the data path. The computer architect has to provide tHin/subtraction is computed in Part A and another in Part B of the
correct sequence of activations of the relay boxes in order to gé8- | call this the “execute” phase of an instruction. A typical

the desired operation. This is done in the Z3 using a technigu@struction fetches its arguments, executes, and writes back the
very similar to microprogramming. result. Zuse took great care to save execution time by overlapping

the fetch stage of the next instruction with the write-back stage of

. the current one. One can think of an execution cycle as consisting
The Control Unit of just two stages, as shown in Fig. 5, where the first two cycles
Fig. 4 shows a more detailed diagram of the control unit and off a series of instructions have been labeled. | have adopted this
the 1/O panels. The circuit Pa decodes the opcode of the instrucenvention in the tabular diagrams of the numerical algorithms
tion read from the punched tape. If it is a memory instructiondiscussed later in this article.
circuit Pb sets the address bus to the value of the lower six bits of The microsequencing is done by special control wheels. There
the opcode. The control unit determines the correct microsds one for the multiplication algorithm, another to control division,
quencing of the instructions. There are special circuits for each @nd yet another for the square root instruction. The moving arm
the operations in the instruction set. shown in Fig. 6 starts moving clockwise as soon as the control

Once a decimal number has been set, a data bus transmits the

IEEE Annals of the History of Computjngl. 19, No. 2, 1997 9

Konrad Zuse’s Legacy

unit decodes the corresponding instruction. In each cycle, the arthe case of the significand, one would need 16 cycles just for the
moves from one position to the next. The arm conducts electricitiransmission of the carry bits. The adders Zuse designed are much
and activates the circuits with which it comes into contact. In théaster than that—they perform an addition or subtraction in Stages
example shown in Fig. 6, the moving arm sets the relay box Ea 1o Il, and Ill of a single cycle. Subtraction is computed by com-
one in the first cycle. This leads to the transfer of the contents gflementing the second argument and adding an extra digit one at
register Af into Aa. In the next cycle, the relay boxes Ec and Fthe lowest bit position.

are activated. In this way, the results of the operations in Parts A Consider addition of the registers Ba and Bb. | will refer to the
and B are written back into the registers Aa and Ba, respectivelith bit of register Bb byl or Bb[i], whatever form seems more

As one can see, such control wheels provide a comfortable plagonvenient. | will use the same notation in the case of other reg-
form for modifying the exact sequence of events during an opera'sters. First of all, a partial result is computed that is the bitwise
tion. They correspond to the microsequencers used today in modOR of both registers, i.ebg = ba XOR bh. A second partial

ern microprocessors. | stop short of calling them a form of mifesult is the bitwise AND operation applied to both registers, i.e.,
croprogramming, because in this case the microsequence has b&&/AND bb. The next operation locates the bit positions at which

hardwired, but it is obvious that microsequencing and micropro? (_:arryhls n_eed_ed.hThe !nt('e:r_meglalgtle resotisare rc]:ompﬁted bié_ _
gramming are closely related. using the circuit shown in Fig. 7. Please note that when a bit is

one, the corresponding line carries a current, otherwise the line is
disconnected from the power source (so that no short circuit can
occur). The resting positions of the relays,bc . , bc,q are the
fetchargs | execute | write back ones shown in Fig. 7. If blig becomes equal to one, the corre-
sponding relay is closed. The final resultbis = bd XOR bg.
Note that the use of relays makes the propagation of the carries up
write back ' to the last bit position needed easier. Since all relays are activated
simultaneously, the carry is not delayed going from one bit posi-
tion to the next.

v v 11 1 w v

» fetchargs execute | write back

first cycle

fetch args execute

second cycle

Fig. 5. The execution pipeline of the Z3.

ba; bb,; ba, bb, ba_15bb ¢
be, be g be 1
ba bb, bagy bbg ba_;bb ba_jg bb ¢
AND AND AND AND
be bcg be ;5 be_jq
bd, bd, bd_ys bd |6
. . . b b b b
Fig. 6. Control wheels for microsequencing. ‘! <0 61'15 Cl‘l(’
XOR XOR ‘ XOR‘ l XOR‘

Extensive use of microsequencing allowed Zuse to simplify the 1 T
Z3. Once the basic circuits had been laid out, it was just a matte °1 beg be.is be.16
of refining the control until optimal sequences of events could be
found. There are a lot of details that the engineer designing tHeg. 7. Circuit for carry look-ahead.
“microprogram” must keep in mind, otherwise short circuits can
destroy the hardware. The Z1 with its mechanical design was stiNumerical Algorithms
more sensitive in this respect than the Z3. Even after it was conta this section, | describe the floating-point algorithms the Z3
pleted, there were sequences of instructions that the programmeases. They are, without exception, the same as those normally
had to avoid in order not to damage the hardware. One of thossed in small sequential floating-point proceséors.
sequences was inadvertently tried at the Berlin Museum of Tech-
nology and Transportation, which led to slight damaging of ther|oating-Point Exceptions

reconstructed Z1 in 1994. The problem with floating-point notation is that special conven-
tions have to be used to deal with the number zero. The Z3 solves
The Adders this problem and deals with other exceptions (overflow and un-

An important feature of the Z3 is the design of the adders, whiclderflow) by monitoring the value of the exponent after any arith-
compute additions and subtractions using a method ceéleg metical operation or a load from memory. A special circuit looks
look-ahead!f binary addition is implemented in a straightforward at the state of the bus Ae and captures exceptions. Any number
way, carries have to be passed from one bit position to the next. nith exponent —64 is flagged as zero: A relay denotedidNset

10 ¢ IEEE Annals of the History of Computingl. 19, No. 2, 1997

to one if the number is stored in the register pair <Af,Bf>. If theare stored in the register pairs <Af,Bf> and <Ab,Bb>. In the first
number is stored in the register pair <Ab,Bb>, the relayidlset cycle, the exponents are subtracted. In Cycle 2, the significand
to one. In this way, we always know if one or both of the arguwith the larger exponent is loaded into register Ba, and the sig-
ments for an arithmetical operation are zero. Something similar isificand with the smaller exponent is loaded into register Bb. The
done for any exponent of value 63 (an infinite number, accordingignificand in register Bb is shifted as many places to the right as
to the convention). In this case, the relays i Ni, are set to the absolute value of the difference of the exponents (exception
one, according to the register pair in which the number is stored. handling takes care of the case in which the smaller number be-

Operations involving “exceptional” numbers (zero or infinity) comes zero after the shift). In Stages I, Il, and Il of Cycle 2, the
are performed as usual, but the result is overridden by the snoogignificands are added, and finally the processor tests if the result
ing circuit. Assume, for example, that a multiplication is com-is greater than two. If this is the case, the significand is shifted
puted and that the first argument is zero (lénset to one). The one position to the right and the exponent is incremented by one.
computation proceeds as usual, but in each cycle the snoopilNpte that the test “if (B& 2)” in Part A of the arithmetical unit is
circuit produces the result —64 at the output of the adder of Part Aloneafter Be has already been computed in Part B during Stages
It does not matter what operations are performed with the signifik, 1l, and Il of Cycle 2.

cands because the exponent of the result is set to —64, and ther—

fore the final result is zero. Division by an infinite number can be Zuse managed to implement exception
handled in a similar manner. The Z3 can detect undefined opera-

tions such as 0/ @ —, o / 00, and 0 x. In all these cases, the handling using just a few relays. This
corregponding exception lamp lights on the output panel, and the fagture of the Z3 is one of the most
machine is stopped. The Z3 always produces the correct result . .
when one of the arguments is zeroxoand the other is a number elegant in the whole deS'Qn-
within bounds. This was not the case for the Z1. Zuse thought of,]])
but did not implement, exception handling in the Z1. The machine N the case of a subtraction, four or five cycles are needed. Fig.
could not correctly perform some computations involving 2&ro. 9 shows the synchronl_zatlo_n required _for a subtraction. The f|r§t
An additional circuit looks at the exponent of the result at thdWe cycles are almost identical to the first two cycles of the addi-
output of the exponent’s adder. If the exponent is greater than §Pn &lgorithm, but now the significands are subtracted. Cycle 3 is
equal to 63, overflow has occurred and the result must be ®et to executed only when the _dlfference of the s_lgn_lf_lcands is negative.
If the exponent is lower than —64, underflow has occurred and thEn€ effect of Cycle 3 is just to make the significand of the result
result must be set to zero. To do this, the appropriate relgyoNn Positive. Cycle 4 is very important: The difference of two nor-
Ni,) is set to one. malized significands can have many zeros in the first bit positions
Zuse managed to implement exception handling using just a fe{ the left. The result is normalized by shifting Be to the left as
relays. This feature of the Z3 is one of the most elegant in the whol8@nY places as necessary (this is done with the shifter between
design. Many of the early microprocessors of the 1970s did ndh€ relay box Fd and register Bb). The number of one-bit shifts is
include exception handling and left it to the software. Zuse's apSubtracted from the exponent in Part A of the processor. In Cycle
proach is sounder, since it frees programmers from the tedium &5 the resultis stored in the register pair <Af,Bf>.
checking the bounds of their numbers before each operation.

cycle [stage | exponent igni d |
0 LILIE

Addition and Subtraction

In order to add or subtract two floating-point numberandy,
their representation must be reduced to the same exponent. Afi LILUL | Ae:=Aa—Ab Be:=0+Bb
this has been done, only the significands have to be added or st

. L . if (A h :=Bf, Bb:=Be (shi
tracted. If the exponents are different, the significand of the| , |,y |if@4eo then Abi=0, A=At e B e e o)

1 W,V | Aa:=Af

smaller number is shifted to the right as many places as necessi (Be or B are shifted |Ae| places to the right)
(and its exponent is incremented correspondingly to keep th i (o) then Ae—AmtAbL1

number unchanged) until both exponents are equal. It can, ¢ o T else Ae=AapAb | DeTBatBo

course, happen that the smaller number becomes zero after

shifts to the right. 3| vy | af=ae i (Be22) then Bli=Be/2

The signs of the two numbers are compared before deciding ¢
the type of operation to be executed. If an addition has been re- .)
quested and the signs are the same, the addition is performedFig- 8- The three cycles needed for the addition algorithm. The argu-
the signs are different, a subtraction is executed. If a subtractio?)ftr;tébfor the addition are stored in the register pairs <Af,Bf> and

) - UH e ,Bb> before the operation is started.

has been requested and the signs are different, an addition is exe-
cuted. If the signs are the same, the subtraction is executed. Multiplication
special circuit sets the sign of the final result according to th@he multiplication algorithm of the Z3 is like the one used for
signs of the arguments and the sign of the partial result. decimal multiplication by hand, that is, it is based on repeated

Addition and subtraction are controlled by a chain of relaysadditions of the multiplicator according to the individual digits of
(not by a control wheel), since the maximum number of cycleshe multiplicand. At the beginning of the algorithm, the first ar-
needed is low. Fig. 8 shows the synchronization required for thgument is stored in the register pair <Af,Bf>. The second argu-
addition of two numbers. Initially, the arguments for the additionment is stored in the register pair <Ab,Bb>. The temporary regis-

IEEE Annals of the History of Computingpl. 19, No. 2, 1997 11

Konrad Zuse’s Legacy

ter pair <Aa,Ba> is set to zeroes. Fig. 10 shows the microsene and compute the remainder, whiclt isy. The remainder is
quencing produced by the multiplication wheel of the control unitdivided recursively by. To do this, it is shifted one position to
The algorithm takes 16 cycles to run. Note that only the bits of ththe left, and the new result bit is stored at position [-1] of register
multiplicand from position —14 to position zero are used. TheBf (in this way nullifying the effect of the shift). If the result bit is
exponents are added in the first cycle and the result just loop=ro, the remainder is just and the recursive division is contin-
afterward in Part A of the arithmetical unit. The significands areued as in the first case.
handled in Part B of the unit. Register Ba contains the partial
result of the computation. The basic multiplication loop has the

. [cycle T stage | exponent
following form: 0 [LI

significand 1

1 IV,V | Aai=Af

Ba:=Be/2
Be := Ba + Bbx (ith bit of Bf)

if (Bf{—14]=1) then Be:=Ba+Bb

LILIII | Ae:=Aa+Ab else Be:—Ba

fori =-14, ..., 0. The partial result Be is shifted one position tc
the right to produce Ba:= Be/2. This is done with the shifter con 2| V,V | Aai=Ae, Af:=0, Ab:=0 Ba:=Be/2
nected to the relay box Fc.

if (Bff—13]=1) then Be:=Ba+Bb

LILII | Ae:=Aa+Ab e Bo—Ba

cycle | stage | exponent significand)
0 [LILI
3 IVAY Aa:=Ae Ba:=Be/2
1| WV | Aa=af
LILII | Ae:=Aa—Ab Be:=0+Bb LILIIT | Ae:=Aat+Ab it (Bff-12]=1) :}llszn gzzgzﬂ%
) o ar_ae | i (Ae20) then Ba:=Af, Bb:=Be (shifted)
2 | vy |20 Zi‘:e“ 2::3’ Aai=Af else Ba:=Be, Bb:=Bf (shifted)
= (I3e or B are shifted |Ae| places to the right)
i IV,V | Aa:i=Ae Ba:=Be/2
LILHI | Ae:=Aa+Ab Be:=Ba—Bb
LILIT | Aei=Aa+Ab if (Bffi — 15]=1) then Be:=Ba+Bb
3 | Vv,V | Aa=Ae, Abi=0 Ba:=0, Bb:=Be else Be:=Ba
LILII | Ae:=Aa+Ab Be:=Ba-Bb
2| ey | Aa=pe Bb:=Be (shifted) 15| Vv | Aai=he Bai=Be/2
V' | Ab:= number of shift positions | (Be is normalized by shifting to the left)
. AL If (Bf[0]=1) then Be:=Ba+Bb
LILUL | Ae:=Aa—Ab Be:=0+Bb LILIII | if (Be > 2) then Ae:=Aa+1 else Be:=Ba
5 v, Af:=. = .
V.V Ae Bfi=Be if (Be > 2) then Bf:=Be/2
16 v,V Af:=Ae else Bf:=Be
Bb:=0

Fig. 9. The four-five cycles needed for the subtraction algorithm. The

first argument is stored in the register pair <Af,Bf> and the second in

<Ab,Bb> before the operation is started. Fig. 10. The 16 cycles needed for the multiplication algorithm. Thigh
bit of register Bf is denoted by Bf[]. The first argument is stored in
the register pair <Af,Bf> and the second in <Ab,Bb> before the opera-

The result of the multiplication is a number_ I < 4 (for ar- tion is started.
guments within bounds). In the last cycle, there is a check to see if
r > 2. If this is the case, the result is shifted one position to the The basic division loop has the following form:

right and a one is added to the exponent of the result.

Ba:=2xBe
Division if (Ba—Bb > 0) then Be := Ba-Bb, Bf[=1
The division algorithm is similar to the multiplication algorithm, else Be := Ba Bff:=0
but subtraction is used repetitively instead of addition. At the
beginning of the algorithm, the dividend is stored in the registefor i =0, . . ., —=14. The partial result Be is shifted one position to

pair <Af,Bf>. The divisor is stored in the register pair <Ab,Bb>. the left to produce Ba :=2 Be. This is done with the shifter con-

The temporary register pair <Aa,Ba> is set to zeroes. Fig. 1Mected to the relay box Fc.

shows the microsequencing produced by the division wheel of the The result of the division of significands is a number ¥=<2.

control unit. The algorithm takes 18 cycles to run. This condition is tested in Cycles 17 and 18r K 1, a one is
The main idea of the algorithm is very simple. The exponent ofubtracted from the exponent, and the result is shifted one posi-

the result is obtained by subtracting the exponents of dividend aritPn to the left in order to get a normalized number.

divisor. Now for the significand: Assume that we want to compute

xly for the significands andy. Since we are dealing with nor- Square Root Extraction

malized numbers, the first digit of the result is on& ¥y and The square root algorithm is the jewel in the crown of the Z3. Fig.

zero ifx <y. In the first case, we set the first digit of the result to12 shows the microsequencing required during the 20 cycles

12 e IEEE Annals of the History of Computingl. 19, No. 2, 1997

needed to compute the square root of a number. The argument for x> in _ (Q-m N q_i2")2
the operation is stored in the register pair <Af,Bf>. The register

pair <Aa,Ba> is initialized to zeroes. The algorithm computes th&his is true if

square root of numbers with an even exponent. If the exponent is)) S S

an odd number, the significand is shifted one place to the left, and x-Q =[x~ Q) - 2"a;(2Q1, + 270) 2 0
the exponent is decremented by one. The final exponerfefinet , using the expression

(computed in Cycle 19) is half this initial exponent. _ , .))
27It-i =x-Q = (X - Q—i+1) - Zilq-i(zQ-m + 27|q-i)

[[cycle | stage | exponent significand

o [TILI This can be written as
— - —i —i+1 —i —i
1| v | Aa=af Ba:=Bf 27t =t 27" -2 qfi(2Q7i+1 +2 q,i)
LILII | Acr—Aa—ab i (Ba~Bb > 0) then Be:Ba-Bb, b1 where we have used the recursive definition
else Be:=Ba, 1=l
—i+1 2
- 27, = (X - Q—i+1)‘
2 | vy | AaThe gf(]:co:l) then B[0):=1 o . !
=0 Ba:=2xBe Simplifying the last expression, we finally get:
=
Lt | Ae—Aatab if (Ba—Bb > 0) then Be:=Ba—Bb, bt:=1 L= 25, -05(2Qu + 2)
else Ber=Ba, b= If t_, is positive forq, = 1, we set bit i-of the final result to one,
] i.e., Bf[H]:=1. If t; is negative, we set Bff}:=0. The recursive
3 Vv | Aa—Ae if (bt=1) then Bf[—1]:=1 a | S
’ Ba:=2xBe computation is started with) = x. Q,, represents at each step the
partial result contained in register Bf. Bit is tentatively set to
LILII | Ae:=AatAb if (Ba-Bb 2 0) then Bei=Ba-Bb, b=l one, and the sign af; is tested. The basic loop of the square root

algorithm for bit—i has the following form:

i | VYV | Aa=Ae ga(}’z‘;;;gzhe“ Bf2-i:=1 Eg : ;i I;fe
_ Bb[-]:=1
LILIT | Aei=AatAb (BamBb 2 0) e e e ™ b= if (Ba— Bb > 0) then Be := B&Bb, Bf[-] := 1
else Be :=Ba, Bff}:=0
16 IV,V | Aa:=Ae g;:b:f;;gzhe“ Bf[—14]:=1 . ___|
The square root algorithm is the

LILII | Ae:=Aa+Ab if (Ba—Bb > 0) g‘;: Ei;:EZjB"’ Eié jewel in the crown of the Z3.

17 | v,V | if (Bff0] = 0) then Ab:i=—1 | Ba:=Bf, Bb:=0 All bits of register Bf are used for the computation of the
square root. If the original number lies within bounds, the result is
LILIII [Ae:=Aa+Ab Be:=Ba+Bb aISO W|th|n bOUndS.

if (Bff0]=0) then Bf:=2xB . .
clse Bf—Bo Read and Display Instructions

The two most complex instructions of the Z3 are those related to
Fin. 11. The 18 cvel ded for the division aloorithm. Tith bit of the input and output of decimal numbers. A decimal number of
relglistef Bfeis decnyocteej Bser?]. 'IPhre cﬁvié\g?\g?sasgg::gdr?ﬁ the reg;iscier f‘?”r digits entered. th.rough the keybogrd is first (.Jo_nverted into a
pair <Af,Bf> and the divisor in <Ab,Bb> before the operation is binary integer. This is done by reading each digit sequentially,
started. transforming it into a binary number, and storing it in the bits
Ba[-10], Ba[-11], Ba[-12], and Ba[-13] of register Ba. The num-
'%er in register Ba is multiplied by 10, and the procedure is re-
eated for the other digits. After four iterations, the decimal input
as been transformed to a binary number (the exponent of the
binary representation is formed indirectly via shifts resulting from
multiplication by 10). The difficult part is handling the exponent.
If the exponeng is positive, the significand has to be multipleed
iEjmes with 10. If it is negative, it must be multiplie& times

with 0.1. Multiplying with 10 is relatively easy: The significand in

o o] e Be can be shifted one bit to the left and then stored in Ba (i.e.,
Qi =Bfl0] x2 + Bfl-1]x2 "+ ... + Bf[-i + 1]2 . Ba := 2x Be) . At the same time, Be can be shifted three places to
the left and can be stored in Bb (i.e., Bb :x Be). The addition

of Ba and Bb then provides the desired result: the multiplication

18 VA Af:=Ae

The main idea of the classical algorithm is to reduce the squa
root operation to a division. If we want to compute the square rotﬂ
of X, we need a numb&p such thak/Q = Q. The resulQ is built
sequentially by setzting thi¢éh bit to one and then testing whether
the condition x >Q still holds. If this is not the case, tith bit
must be set to zero.

Assume that we have already computed from bit zero to b
—i + 1 of the final result. Denote I6Y;,, the significand

Bit —i is then set toy; and it must hold that

IEEE Annals of the History of Computingpl. 19, No. 2, 1997 13

Konrad Zuse’s Legacy

of the original number in Be with the constant 10. The procespositive, the number is multiplied with 0.1 as many times as
takes four cycles for each multiplication, that is, 32 cycles for theieeded to make the binary exponent equal to two and until the
decimal exponent +8. Since a read operation needs a minimum fifst left four bits of register Bf contain a nhumber between zero
nine cycles, this means that a decimal number with exponent +8 &d nine (0000 and 1001). This is the decimal digit that can be
read in 41 cycles.

displayed in the next column of the output panel. The number is
subtracted from the significand in Bf, and the process continues
for the following digits. If the binary exponent of the number in

[_cycle | stage | exponent | significand 1
0 [LI register R1 is negative, the process is similar, but multiplications
with the constant 10 are used.
If (Af[0]=1) then Ba:=2xBf
1 v,v else Ba:=Bf
Bb[0]:=1 Complete Architecture of the Z3
] | will now explain the detailed diagram of the Z3 shown in Fig. 13.
LILII H(BaBb 20 Z?sin BerBa, b0 I discussed the control unit and the I/O panels earlier. Notice
that the four decimal digits of the input keyboard are transferred
. to register Ba using the relay boxes Za, Zb, Zc, and Zd, which are
2 | vy B0 i (=) then BHIO]:1 activated one after the other
a:=2xBe, Bb:=2xBf, Bb[—1]:=1 .
The relay boxes Eg and Ei are used to set some useful con-
LI if (Ba—Bb > 0) then Be:=Ba~Bb, bt:=1 stants directly into t_he exponent registers (+13 an_d —4, which are
w else Be:=Ba, bt:=0 used for the numerical base conversions). The shifter Ee between
register Af and register Aa is used for the square root algorithm.
5 Vv if (bt=1) then Bf[—1]:=1 The exponent of the result (Aa) becomes half the exponent (Af) of
’ Ba:=2xBe, Bb:=2xBf, Bb[-2]:=1 the Origina| number.
Ah, is a relay acting as a flip-flop. When it is set to zero, the
LILII if (Ba—Bb 2 0) then Be:=Ba—Bb, bt:=1 register pair <Af,Bf> is accessed by load operations. When it is
else Be:=Ba, bu:=0 set to one, the register pair <Ab,Bb> is accessed. This relay is
reset to zero by the control ling &he control lines ag, b, and
b, are used to clear the registers Af, Ab, Bf, and Bb when needed.
. if (bt=1) then Bf[2—i]:=1
¢ v Ba:=2xBe, Bb:=2xBf, Bb[1 — i}:=1 . -
exponent of input exponent of result
unched taj X Q
LILII if (Ba—Bb > 0) then Be:=Ba—Bb, bt:=1 ’ ” control unit @?@ ©- Q?@"
i else Be:=Ba, bt:=0 Ef;z;']ay E
Pupcude divisior; : ;4 Z (keyboard) R (resuly
E squre oo | W 000 ®OOO®
Wign v —= 8 ®eE® ®EOE®
if (bt=1) then Bf[—16]:=1 Y y
18 v,V Ba:=2xBe, Bb:=2x Bf %%%% ®%%%%
| LLL1
if (Ba—Bb > 0) then Be:=Ba—Bb, bt:=1 address bus
LILII else Be:=Ba, bt:=0 .
19 IV,V | Aa:=Af/2 Ba:=Bf, Bb:=0 & [Ed]
shift (-2..1) shift (-16..15)
Fp Fq
LILIII | Ae:=Aa+0 | Be:=Ba-+Bb
20 IV,V | Af:=Ae Bf:=Be]
Fig. 12. The 20 cycles needed for the square root algorithm. Thih
bit of registers Bf and Af are denoted by Bff] and Afi], respectively. multiploxer
The argument is stored in the register pair <Af,Bf> before the opera- -+
tion is started. infinite

In the case of negative exponents, multiplication with the con
stant 0.1 is performed using the shifters and the adders as well. Tt
multiplication is somewhat more complex, because 0.1 is a period
number in the binary system. The description of the microsequen:
ing used would take us too far away from the main topics, so | om
it here. (It can be found in Zuse's patent applicatfpn.

The display instruction works by multiplying or dividing itera-

address

memory

tively by 10. If the binary exponent of the number in register R1 ig"ig- 13. The complete architecture of the Z3.

14 e |IEEE Annals of the History of Computingl. 19, No. 2, 1997

64 numbers.

The box labeled “zero, infinite” below Ae represents the circuitsbranching, although it featured loops; the ENIAC was not even
for exception handling. They snoop permanently on the data bysogrammable through software—the building blocks had to be
(results of operations and data from memory) and raise the corrbardwired in dataflow fashion. Conditional branching was
sponding exception flags when needed. The shifter below Be is usedtailable in the ENIAC only in a limited way, and self-
to displace the significand one bit to the right. This provides thenodifying programs were, of course, out of the question.
normalization needed for the significand wheneveeRe

Fp and Fq are the relays that control the number and direction
of one-bit shifts in the shifter below the relay boxes Fc and Fa-

TABLE 2
COMPARISON OF ARCHITECTURAL FEATURES

Fh, Fi, Fk, Fl, and Fm have the same function in relation to the | Mechine C:;f:eogzrz?:dq f,oad:ho;l pﬂm hard | selfmodiing | indiect
other shifter. Using these five bits, the numbers betwdénand o T e POBRIE, | SO
15 can be represented, and this is also the range of the secc | Atanasoft’s v x hard x x
shifter. When such a shift is performed, the number represente | -~ . sty oot . -
by the relays Fh to Fm is transferred through the relay box Bnt | mark1 v v soft v x

register Ab in order to modify the exponent of the result. If the
number is shifted 10 positions to the left, then +10 is subtracted

from the exponent of the result. Such drastic shifts are needed TABLE 3
mostly after subtractions. SOME ADDITIONAL ARCHITECTURAL FEATURES

Look again at the diagram of the Z3. Everything makes Sens [Machine | internal | fixed-point or | bit-sequential | architecture | technology
now and looks as conventional as any modern small floating coding | floating-point? | arithmetic?

. I I d d . h 7 bl t f Zuse’s Z1 binary floating no sequential mechanical
pOInt processor tls Inaee amaZIng ow Zuse Was able 1o Tin Atanasoff’s binary fixed-point yes vectorized electronic
the adequate architecture rlght from the beglnﬂlng. The Z{| s-Mark1 decimal fixed-point no parallel electromechanical
processor employs just 600 relays; the memory needs thre| EMAC decimal | fixed-point no datafiow electronic

M-Mark 1 binary fixed-point yes sequential electronic

times as much. By having to optimize the design and by having
to save hardV_/are everywhere,. Zuse med to think and Tables 2 and 3 show the most relevant information about the
rethink the logical structure_of_ his mac_hme. He was not aIIo"ve%arly computing machines mentioned earlier. As should be clear
th_e_ luxury of the almost unlimited funding allocated by the U.S.¢) e tables, none of the early computing machines fulfills
military for the de;llelcl)pment r?fl thi,ENlAC hor by IBI\S for th;’_ all the necessary requirements for a universal computer. | also
Mark |. He was all alone. While this may have worked to 'Sinclude the Mark | machine built in Manchester from 1946 to

advantage from the con_cep_tual side, it _m_ay a_Iso have worked tf’948, because as far as | know this was the first machine to fit
his disadvantage, considering the negligible impact that the Zflny definition of a universal computer. The Mark | was built

and Z3 had on the emerging U.S. computer industry after Worlqmder the direction of F.C. Williams and T. Kilburn. This ma-

War 1112 chine stored its program in random-access digital memory im-
plemented with CRT tubes. All necessary instruction primitives
The Invention of the Computer were available (in modified form), and although it lacked indi-
The main defect of the Z3 was the absence of a conditional brancbct addressing, self-modifying programs could be written. The
in the instruction set. When the program is stored on punchefirst program ran in June 1948 and calculated the highest proper
tape, a possible fix is to include multiple tapes and a mechanisfactor of a large numbérin September 1948, Turing was ap-
to switch between them (as was done with the Harvard Mark I)pointed as a reader in mathematics in Manchester and wrote
Another possibility is having a “program counter,” so that the tapasome programs for the first universal computer in the world. His
can be advanced or rewound on demand. vision of universal computation published in 1936, the same
Sometimes the dividing line between calculating machineyear in which the storage unit of the Z1 was completed, had at
and universal computers is drawn by differentiating betweerast become a reality. Tables 2 and 3 are emphatic: The inven-
machines with externally or internally stored programs. | haveion of the computer was a collective achievement encompass-
argued elsewhet@that this is not a valid criterion. An external ing two continents and 12 years.
program can work as an interpreter of numerical data. The ex-
ternal program becomes a fixed part of the processor, and th%cknowledgments
data become the program, much in the same way as a univerdaéciphering the sketchy documentation available was possible
Turing machine works as an interpreter. | have argued that whainly with the collaboration of several of my students at the Uni-
is needed for universal computation is a minimal instruction setersities of Halle and Berlin. | thank Alexander Thurm and Axel
and indirect addressirg.Indirect addressing can be simulated Bauer, who implemented a gate-level simulation of the Z3 proces-
by writing self-modifying programs, so that the instruction setsor. We became aware of synchronization problems when the
becomes the defining criterion. A machine with enough adsimulation refused to run. I also thank Franz Konieczny, Reimund
dressable memory and an accumulator and that is capable 8pitzer, and Roland Schultes, who wrote part of a stand-alone
executing the instructions CLR (clear), INC (increment), simulation of the processor in C. We started working on the Z3
LOAD, STORE, and BZ (branch if zero) is a universal com-with the help of Konrad Zuse, who gladly answered our questions.
puter. In this sense, the Z1 wagat a fully fledged computer, but It was amazing to see how, after almost 60 years, the whole de-
neither were any of the other early machines. The ABC was aign of the Z3 was still in his head. Unfortunately, Zuse died in
special-purpose machine for solving sets of linear equations b®ecember 1995 before this description of his work was ready.
Gaussian elimination; the Harvard Mark | lacked conditionalThis paper is dedicated to his memory.

IEEE Annals of the History of Computingpl. 19, No. 2, 1997 15

Konrad Zuse’s Legacy

References

[1] H. Aiken and G. Hopper, “The Automatic Sequence Controlled
Calculator,” reprinted in B. Randell, edThe Origins of Digital
ComputersBerlin: Springer Verlag, 1982, pp. 203-222.

[2] A.W. Burks and A.R. Burks, “The ENIAC: First General Purpose
Electronic Computer,/Annals of the History of Computingol. 3,
no. 4, pp. 310-399, 1981.

[3] A.W. Burks and A.R. BurksThe First Electronic Computer: The
Atanasoff StoryAnn Arbor: Univ. of Michigan Press, 1988.

[4] K.-H. CzaudernaKonrad Zuse, der Weg zu seinem Compifgr
Munich: Oldenbourg Verlag, 1979.

[5] D. Knuth, The Art of Computer Programming-Seminumerical Algo-
rithms,vol. 2. Reading, Mass.: Addison Wesley, 1981.

[6] I. Koren, Computer Arithmetic Algorithmd&Englewood Cliffs, N.J.:
Prentice Hall, 1993.

[7] S.H. Lavington,A History of Manchester Computenglanchester,
England: NCC Publications, 1975.

[8] S.H. Lavington, Early British Computers.Manchester, England:
Digital Press, 1980.

[9] B. Randell, ed.The Origins of Digital Computer®erlin: Springer
Verlag, 1982.

[10] R. Rojas, “Who Invented the Computer? The Debate from the View-
point of Computer Architecture,” W. Gautschi, effifty Years
Mathematics of Computatioroceedings of Symposia in Applied
Mathematics, AMS, pp. 361-366, 1993.

[11] R. Rojas, “On Basic Concepts of Early Computers in Relation to
Contemporary Computer Architectures?roc. 13th World Com-
puter Congressiiamburg, pp. 324-331, 1994.

[12] U. Schweier and D. Saupe, “Funktions und Konstruktions

prinzipien der programmgesteuerten mechanischen Rechen
maschine Z1,Arbeitspapiere der GM321, Bonn, 1988.

[13] N. SternFrom ENIAC to UNIVACBedford: Digital Press, 1981.

[14] K. Zuse,Patentanmeldung Z-239German Patent Office, Berlin,
1941.

[15] K. Zuse,Der Computer mein Lebensweerlin: Springer-Verlag,
1970.

[16] K. Zuse, personal communication, Mar. 18, 1995.

Rall Rojas received his bachelor's degree
in mathematics and physics at the National
Technical University of Mexico and a mas-
ter's in mathematics from the same institu-
tion. He received the PhD from the Free
University of Berlin in 1988. He has been
working on neural networks since 1988 and

‘ got the German Habilitation title in 1994.
Dr. Rojas was a computer science researcher

at the National Laboratory for Mathematics and Computer Sci-
ence in Berlin from 1986 to 1989. Then he was associate re-
searcher at the Free University of Berlin’s Department of Mathe-
matics and Computer Science from 1989 to 1994. Since 1994 he
has been a professor of computer science at the University of
Halle. Dr. Rojas has publishéteural NetworkgSpringer-Verlag,
1996). He has held seminars on the history of computing for com-
puter science students.

-

The author can be contacted at

Department of Mathematics and Computer Science
Martin Luther University

Kurt Mothes Str. 1

06120 Halle, Germany

e-mail: rojas@inf.fu-berlin.de

16 ¢ IEEE Annals of the History of Computingl. 19, No. 2, 1997

