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S. P. NOVIKOV

§ 1. Formulation of the problem. Minimal model

We consider a simply-connected manifold Mn (possibly not closed) and its ho-
motopy groups πq+1(Mn).

Problem. 1 Given a homotopy type, what are the universal expressions in terms of
differential forms on the manifolds Mn and Sq+1 depending on a map F : Sq+1 →
Mn that give rise to (q + 1)-forms on Sq+1 whose integrals over Sq+1 are homo-
topically invariant? To classify such expressions and to specify those that have the
“rigidity” property, if the integrals over tlie sphere are integers up to a universal set
of normalization constants depending only on the homotopy type of the manifold.

The simplest example is the Whitehead realization of the Hopf invariant for
F : S4n−1 → S2n, where

(1) H(F ) =
∫
S4n−1

v ∧ F ∗(ω), dv = F ∗(ω).

(An integral
∫
v curl v d3v of this kind occurs in hydrodynamics.)

Homotopy invariant integrals that cannot be reduced to the Hurewicz homomor-
phism, that is, to integrals over spherical cycles of closed forms in Mn, are called
“analytic generalized Hopf invariants”. The “rigid formulae” are of particular in-
terest (see below).

We assume further that the rational homotopy type of Mn is different from Sn

(where the problem in question is solved by (1)).
It is well known that the rational homotopy type (or Q-type) of simply-connected

objects can be conveniently described by Sullivan’s so-called minimal model. To
each complex K with π1(K) = 0 there corresponds a minimal model of its Q-type,
a free graded skew-commutative differential algebra over Q denoted by A = A(K),
which has free multiplicative generators xjα of dimensions j > 2 such that

(2) ∂xjα = Pjα(. . . , xqβ , . . . ), q < j,
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that is, the polynomials Pjα depend on the generators of dimension less than j,
although dim ∂xjα = j + 1.

If the homotopy type of K is realized as a smooth (possibly open) manifold Mn,
then by a standard induction on tlie dimension we can construct a realization, that
is, a homomorphism ψ of A = A(K) into the algebra Λ∗(Mn) of infinitely smooth
real forms (see the end of § 3):

(3) ψ : A→ Λ∗(Mn),

which induces the cohomology isomorphism

H∗(A) = H∗(Mn).

We require that ψ(x) = ψ(∂y) in the construction of ψ for any x of dimension n,
dimx = n.

§ 2. Algebraic constructions

We consider an arbitrary skew-commutative graded algebra

T =
∑
j>0

T j , T 0 = k

over the field k = Q, or R, or C with a differential ∂ : T j → T j+1. Let H1(T ) = 0.
We introduce the minimal free extension C̄(q)(T ) ⊃ T such that Hj(C̄(q)(T )) = 0,
j 6 q. This can be constructed as follows. We consider a sequence of extensions

T0 = T → T1 → T2 → . . .→ C̄(q)(T ),

where the embedding Hj(Tk) → Hj(Tk+1) is zero for j = 1, 2, . . . , q. We construct
Tk+1 by adding new free generators whose ∂-operator lies in Tk, which yields a
minimal set of multiplicative generators of H∗(Tk) in the dimensions 6 q.

Definition. The homotopy group of the algebra πq+1(T ) is

Hom(Hq+1(C̄(q)(T ), k) = Hq+1(C̄(q)(T )) = πq+1(T ).

If T = Λ∗(Mn) is an algebra of forms, a minimal model, or its image in Λ∗(Mn),
then

πq+1(T ) = πq+1(Mn)⊗ k.

This construction is sufficient for all purposes except the variational calculus.
Having in mind subsequent applications, we perform (for q + 1 > n) a two-stage
construction to single out in the finite algebra C̄

(q)
n = C̄(q)(T ), T = ψ(A) an

important part. The result C(q)
n of the first stage is essentially independent of q.

For q + 1 < n nothing more is needed than the construction above.
As will be clear from § 3, this construction can be realized easily in the algebra

of forms Λ∗(Sq+1 × R) for a map Sq+1 × R →Mn.
We fix a minimal model A, which is a ring with a boundary operator of the

form (2), and numbers n and q, q + 1 > n. We denote by An ⊂ A the subring
generated by the symbols xjα for j 6 n− 1.

We denote by Jn ⊂ A the ideal generated by the elements of dimension n that
are basis elements of A/ Im ∂ and by all x ∈ A of dimension j > n+ 1.

We now define In as In = Jn ∩An. Clearly,

(4) A/Jn = An/In, H∗(A/Jn) = H∗(Mn).
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We consider a differential extension of An, that is, a free skew-commutative
algebra Dn ⊃ Cn ⊃ An, where the embedding An → Cn is zero in the cohomology
of dimensions j 6 n. If yjγ is a minimal multiplicative basis of H∗(Mn) and ỹjα
are their representatives in An, ∂ỹjγ = 0, then we introduce new symbols (which
also yields Cn and Dn)

(5)

{
v
(0)
j−1,γ , b

(0)
j−1,γ , c

(0)
j−2,γ , ∂v

(0)
j−1,γ = ỹjγ , ∂c

(0)
j−2,γ = b

(0)
j−1,γ ,

Cn = An[. . . , v
(0)
j−1,γ , . . . ], Dn = Cn[. . . , b

(0)
j−1,γ , c

(0)
j−2,γ , . . . ].

Iterating the construction we construct new embeddings

Cn → C
(q)
n,1 → C

(q)
n,2 → . . .→ C(q)

n,∞,

where C(q)
n,p+1 is obtained from C

(q)
n,p by the adjunction of new generators v(p)

j−1,γ

with ∂v
(p)
j−1,γ ∈ C

(q)
n,p and the embeddings C(q)

n,p → C
(q)
n,p+1 are zero in the homology

of dimensions j 6 n, Cn,0 = Cn.
The algebras D(q)

n,p are constructed similarly, by adding to C(q)
n,p symbols b(p)j−1,γ ,

c
(p)
j−2,γ , ∂c

(p)
j−2,γ = b

(p)
j−1,γ .

All the algebras D(q)
n,p and C(q)

n,p are free. By construction, H∗(C(q)
n ) = H∗(D(q)

n ).
We consider the free skew-commutative algebras C(q)

n andD(q)
n with the following

generators:

(6)

{
C(q)
n = An[. . . , v

(p)
j−1,γ , . . . ],

D(q)
n = C(q)

n [. . . , b(p)j−1,γ , c
(p)
j−2,γ , . . . ], p > 0.

It is obvious that H∗(C(q)
n ) = H∗(D(q)

n ). We also introduce the differential
quotient algebras (no longer free):

(7)

{
C̄

(q)
n,0 = C(q)

n /InC
(q)
n , D̄

(q)
n,0 = D(q)

n /InD
(q)
n ,

H∗(C̄(q)
n,0) = H∗(D̄(q)

n,0), In ⊂ An.

We consider the following differential q-extension of C̄(q)
n,0 and D̄(q)

n,0. Let w(0) be

a minimal multiplicative basis of H∗(C̄(q)
n,0) = H∗(D̄(q)

n,0) in dimensions k 6 q and

w̃
(0)
kβ representatives of it, ∂w̃(0)

kβ = 0. We introduce the symbols

(8) x0
k−1,β , d

(0)
k−1.β , e

(0)
k−2,β , ∂x

(0)
k−1,β = w̃

(0)
kβ , ∂e

(0)
k−2,β = d

(0)
k−2,β .

Next, we set

(9)


C̄

(q)
n,1 = C̄n,0[. . . , x

(1)
k−1,β , . . . ],

D̄
(q)
n,1 = D̄n,0[. . . , x

(0)
k−1,β , d

(0)
k−1,β , e

(0)
k−2,β , . . . ],

H∗(C̄(q)
n,1) = H∗(D̄(q)

n,1).
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Iterating the construction (9) we introduce a minimal multiplicative basis w(1)
kβ ∈

H∗(C̄(q)
n,1) in dimensions k 6 q, new symbols and rings

(10)


x

(1)
k−1,β , d

(1)
k−1,β , e

(1)
k−2,β , ∂x

(1)
k−1,β = w̃

(1)
kβ ∈ C

(q)
n,1, ∂e

(1)
k−2,β = d

(1)
k−1,β ,

C̄
(q)
n,2 = C̄

(q)
n,1[. . . , x

(1)
k−1,β , . . . ],

D̄
(q)
n,2 = D̄

(q)
n,1[. . . , d

(1)
k−1,β , e

(1)
k−1,β , . . . ],

Thus we obtain a sequence of extensions (10)

C̄
(q)
n,0 ⊂ C̄

(q)
n,1 ⊂ . . . ⊂ C̄(q)

n ,

D̄
(q)
n,0 ⊂ D̄

(q)
n,1 ⊂ . . . ⊂ D̄(q)

n ,

By the construction,

(11) H∗(D̄(q)
n ) = H∗(C̄(q)

n ).

Definition. We define a λ-deformation of the natural embedding P : C̄(q)
n → D̄

(q)
n

as an automorphism that is the identy on the image of An and is of the form

(12)

x
(p)
k−1,β

P−→ x
(p)
k−1,β + λd

(p)
k−1,β ,

v
(p)
j−1,β

P−→ v
(p)
j−1,β + λb

(p)
k−1,β

for all j, β, and all dimensions 6 q − 1.

We now construct the required differential extension of An to A. We consider
the homomorphic embedding (6)

ϕ : An 7→ C(q)
n

and choose a minimal multiplicative basis in Kerϕ∗ in dimensions j > n + 1,
z
(0)
jα ∈ Kerϕ∗. Let z̃(0)

jα be representatives of them in An, ∂z̃
(0)
jα = 0

Let m(0)
j−1,α ∈ C

(q)
n , n(0)

j−1,α ∈ A;

∂m
(0)
j−1,α = z̃

(0)
jα ,

∂n
(0)
j−1,α = z̃

(0)
jα .

The first extension An,1 ⊃ An consists of An with all the elements n(0)
j−1,α adjoined.

We construct the map ϕ1 by the formula

ϕ1 : An,1 → C(q)
n ,

ϕ∗1 : H∗(An,1) → H∗(C(q)
n ),

ϕ1 : n
(0)
j−1,α 7→ m

(0)
j−1,α.

By going over to the kernel Kerϕ∗1 and bearing in mind that Hj(A) = 0 for j > n,
we iterate the construction and obtain a sequence of homomorphisms (13) and
embeddings, introducing the elements

(13) m
(0)
j−1,α ∈ C

(q)
n , n

(0)
j−1,α ∈ An,s ⊂ A,

An = An,0 ⊂ An,1 ⊂ . . . ⊂ An,∞ ⊂ A,

ϕj : An,j → C(q)
n , ϕn,∞ : An,∞ → C(q)

n .
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We denote the composition An,∞ → C
(q)
n → C̄

(q)
n by κ, that is,

κ : An,∞ → C̄(q)
n , κ∗ : H∗(An,∞) → H∗(C̄(q)

n ).

By going over to the kernel Ker κ∗, we construct by analogy to (13) differential
extensions of the ring An,∞ = B

(q)
n,0 and homomorphisms

(14)

{
B

(q)
n,0 = An,∞ ⊂ B

(q)
n,1 ⊂ . . . ⊂ B(q)

n ⊂ A,

κ = κ0, κs : B(q)
n,s → C̄(q)

n , κ∞ : B(q)
n → C̄(q)

n .

Lemma 1. The ring B(q)
n,∞ contains all the elements of Aq+1.

Remark. Since the ring C̄(q)
n is not free, it can happen that κ(x) = 0. For example,

this is so for all x ∈ An with dimx > n.
In this case, if κs−1(x) = 0 and x is a multiplicative generator in cohomology,

one has to start in the extension of κs to A from the rule κs(∂−1x) = 0 and also
in the construction of all the κi.

Generally speaking, there arises a homomorphism that is only partially deter-
mined and is not unique (the “higher Hurewicz homomorphism”)

(15) H(q) : πq+1(Mn) → Hq+1(C̄(q)
n ),

where Hj(C̄
(q)
n ) = 0 for j 6 q by the construction and H∗ are the linear forms

on H∗.
We recall that πq+1(Mn) is represented as linear forms on A that are non-trivial

only in the dimension q + 1 and vanish on all elements that can be factored as
products of elements of positive dimensions. The construction of H(q)

n is as follows.
We consider the set of (q + 1)-dimensional elements u ∈ A such that

(16) ∂κ∞(u) = 0, κ∞ ∈ C̄(q)
n .

This set forms a subgroup Γ̃n,q and generates a subgroup of classes modulo Im ∂

(17) t : Γ̃n,q → Γn,q ⊂ Hq+1(C̄(q)
n ).

There are two homomorphisms:

s : πq+1(Mn) → Γ̃∗n,q = Hom(Γ̃n,q, Q),

t∗ : Hq+1(C̄(q)
n ) → Γ̃∗n,q.

We set

(18) H(q)
n = (t∗)−1 ◦ s.

We can also define the dual homomorphism

(19) s∗ ◦ t−1 : Hq+1(C̄(q)
n ) → π∗q+1 = Hom(πq+1, Q),

s∗ ◦ t−1 = H(q)∗
n .

Lemma 2. The homomorphism H
(q)∗
n is uniquely determined and is an isomor-

phism.

Each element z ∈ Hq+1(C̄(q)
n ) can be represented by a cocycle z̃ ∈ C̄(q)

n , ∂z̃ = 0,
of the form

(20) z̃ = Rz(. . . , v
(p)
jγ , x

(s)
kβ , . . . ).
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Lemma 3. Suppose that the embedding C̄(q)
n → D̄

(q)
n is subjected to a λ-deforma-

tion (12), that z̃ is a cocycle of C(q)
n of dimension q + 1, and z̃λ its image under

the λ-deformation. Then
z̃λ − z̃ = ∂wλ ∈ D(q)

n .

Example. For the homotopy type of the bouquet Mn ∼ S2 ∨ S2 we can take any
n > 3.

For n = 3 the manifold M3 is obtained by deleting two distinct points from R3.
We have the homomorphisms:

(21)

{
H

(2)
3 : π3(M3) → H3(C̄

(2)
3 ),

H
(3)
3 : π4(Mn) → H4(C̄

(3)
3 ).

In the minimal model the generators are

x2α = (x, y), x3α = (z, w, t), x4α = (a, b),

∂z = x2, ∂w = xy, ∂t = y2,

∂a = zy − wx, ∂b = wy − tx, . . .

Let n = 3. Then A3 = Q[x, y],

C
(q)
3 = A3[vx, vy], ∂vx = x, ∂vy = y.

We now construct A3,1 and the homomorphism ϕ1 : z → xvx, w → xvy, t→ yvy,
where the images ϕ1(z), ϕ1(w), ϕ2(t) are cocycles in C̄(q)

3 .
Next, we construct A3,2, ϕ2(a) = xvxvy, ϕ2(b) = yvxvy. Clearly, ϕ2(a) and

ϕ2(b) are cocycles in C̄
(3)
3 . We obtain homomorphisms of H(2)

3 and H
(3)
3 onto the

groups π3 ⊗ Q and π4 ⊗ Q, using the homomorphisms π1 and ϕ2. The formulae
(20) in C̄(q)

3 for (z, w, t, a, b) ∈ A3,2 assume the form:

(22)


κx(u) = ϕ2(u), n = 3,

Rz = xvx, Rw = yvx, Rt = yvy (q + 1 = 3),

Ra = xvxvy, Rb = yvxvy (q + 1 = 4; n = 3).

§ 3. Geometric realization. The analytic generalized Hopf invariant.
The rigidity property

We use the geometric realization of the minimal model A indicated in § 1,

ψ : A→ Λ∗(Mn).

This geometric realization can also be subjected to a deformation ψ → ψλ, where
tlie images of all the generators ψ(xjα) = x̄jα are enlarged by following additional
terms (by induction on the dimension): to tlie closed generators and, consequently,
to the generators of lowest dimension exact forms are added

κ̄jα → x̄j,α(λ) = x̄jα + λ dθj−1,α, dx̄jα = 0,

Suppose tliat tlie construction is completed for j < m. Then dx̄mα = Pmα,

dx̄mα(λ) = Pmα(. . . , x̄qβ(λ), . . . ), q < m.

Starting from the condition
dψ = ψ∂
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we find a universal polynomial Qmα(. . . , x̄qβ , λθq−1,β , . . . ) in all the symbols x̄qβ ,
λθq−1,α, q < m such that dQmα = Pmα(λ)− Pmα(0).

Next we put

(23) x̄mα(λ) = x̄mα +Qmα + λ dθm−1,α.

Definition. We say that (23) defines a deformation ψλ of the geometric realiza-
tion ψ.

We fix a realization ψ and consider an arbitrary C∞-map

F : Sq+1 × R →Mn,

which induces a homomorphism of the minimal model

F ∗ψ : A→ Λ∗(Sq+1 × R).

Lemma 4. a) There is a homomorphism of the “geometric realization” of the
differential algebras

ψF : C̄(q)
n → Λ∗(Sq+1 × R).

b) For two distinct geometric realizations

ψ
(s)
F : C̄(q)

n → Λ∗(Sq+1 × R)

there is a homomorphism of differential algebras

ΦF : D̄(q)
n → Λ∗(Sq+1 × R)

such that
ΦF /C̄(q)

n = ψ
(0)
F ,

ΦF /PC̄(q)
n = ψ

(1)
F (λ = 1),

that is, ψ(1)
F is obtained from ψ

(0)
F by a λ-deformation for λ = 1.

The construction of ψF and ΦF makes use of the exactness of all closed forms
of dimension not exceeding q in the sphere Sq+1 × R and begins naturally with
the realization of C(q)

n . We note that ψF : C(q)
n → Λ∗(Sq+1 ×R) annihilates all the

elements of InC
(q)
n , since ψF (In) = 0, etc.

We denote the images of all the xjα, x(s)
kβ , and v

(p)
lγ under ψF also by xjα, x(s)

kβ ,

v
(p)
lγ ∈ Λ∗(Sq+1 × R).

Theorem 1. For any z ∈ Hq+1(C̄(q)
n ) the formulae (20) determine the “analytic

generalized Hopf invariant” Hanal
z means of the integral

(24) Hanal
z {F} =

∫
Sq+1

Rz(. . . , xjα, x
(s)
kβ , v

(p)
lγ , . . . ).

The formula (24) is homotopy-invariant and determines a linear form

Hanal
z : πq+1(Mn)⊗Q→ R.

Then
Hanal
z (x) = cψn,qH

(q)∗
n (z, x),

x ∈ πq+1(Mn), z ∈ Hq+1(C̄(q)
n ).

Definition. If the constants cψn,q remain unchanged under a deformation of the
geometric realization ψ of the minimal model A = A(Mn) in Λ∗(Mn), then the
element is said to be “rigid”, z ∈ Hq+1

st (C̄(q)
n ).
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Example. For M3 ∼ S2∨S2 the Ru are given by (22). In the geometric realization
we have two closed forms x, y ∈ Λ(M3) representing x, y ∈ H2(M3), x, y ∈ A3.
Next, we have the forms

x̄ = F ∗(x), ȳ = F ∗(y), dvx = x̄, dvy = ȳ.

According to (22) we obtain the densities of the “generalized analytic Hopf in-
variants” for

(25)


M3 = R3 \ (P1 ∪ P2), q + 1 = 3, 4,
Rz = x̄vx, Rw = ȳvx, Rt = ȳvy,

Ra = x̄vxvy, Rb = ȳvxvy.

Proposition. The cocycles Ru for u = (z, w, t, a, b) are rigid, that is, their integrals
over a sphere of dimension Sq+1 do not change under deformations of the minimal
model in M3.

Let us prove this by way of illustration. Let τ1 and τ2 be 1-forms in M3 that
specify a deformation of the minimal model x → x + dτ1, y → y + dτ2. Then
vx → vx + τ̄1, τ̄1 = F ∗(τ1), τ̄2 = F ∗(τ2).

a) Let q + 1 = 3. After the deformation we have

R′z = (vx + τ̄1) ∧ (x̄+ dτ̄1) = vxx̄+ vx dτ̄1 + τ̄1x̄+ τ̄1 dτ̄1.

All these forms are closed in Λ∗(S3 × R), where F : S3 × R → M3. Any 3-form in
M3 is closed and exact, therefore τ̄1x̄ and τ̄1 dτ̄1 are exact in S3 × R.

We integrate vx dτ̄1 by parts:

vx dτ̄1 = −d(vτ1) + x̄τ̄1.

The second term on the right lies in ImF ∗ and is thus exact in S3 × R.
The proof for w and t is quite similar.
b) Let q + 1 = 4. After the deformation we have

R′a = (x̄+ dτ̄1)(vx + τ̄1)(vy + τ̄2) = Ra + dτ̄1vxvy + . . .

All the omitted terms have the form vxF
∗(ω) or vyF ∗(ω), where ω is a 3-form in

M3. Since dω = 0 and ω = dh in M3, integration by parts yields

vxF
∗(ω) = −d(vxh̄) + x̄h̄,

where x̄h̄ ≡ 0, since dimM3 < 4. Forms like vxF ∗(ω) and vyF
∗(ω) are exact in

S4 × R. Next we consider the term dτ̄1vxvy and integrate by parts:

dτ̄1vxvy = d(τ̄1vxvy)− τ̄1x̄vy − τ̄1vxȳ,

both additions have the form vxF
∗(ω) or vyF ∗(ω) and are thus exact, as above.

This completes the proof.
If we do not insist on rigidity, then our constructions can be extended in a natural

way. Let T ⊂ Λ∗(Mn) be a subalgebra that is closed under d. We construct its min-
imal differential extension T̄ ⊂ Λ∗(Mn) such that the embedding homomorphism
has kernel zero (is a monomorphism):

H∗(T̄ ) ⊂ H∗(Mn).

This can be done by induction on the dimension, choosing in T a basis aj of the
kernel of the embedding of the cohomology of least dimension and adding to it a
set of forms d−1(aj) in Λ∗(Mn), etc. If we choose the initial T by taking a set of
closed forms in “general position” for a minimal multiplicative basis of H∗(Mn),
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then the algebra T̄ is identical with the image ψ(A), where A is Sullivan’s minimal
model (see § 1). However, in a number of important special cases we can select
subalgebras T that are not in general position. For example, we can take the
algebra of two-sided invariant forms for symmetric spaces or of harmonic forms for
Kähler manifolds (as in research on the Q-type by Sullivan, Deligne, Griffiths, and
Morgan) or subalgebras of them and a number of others. As before, we construct
C̄(q)(T̄ ) by means of a sequence of differential extensions

C̄
(q)
0 = T̄ → C̄

(q)
1 → C̄

(q)
2 → . . .→ C̄(q)(T̄ ),

where all the embeddings are zero in the cohomology in dimensions not exceeding q
(see § 2).

Next, for smooth maps Sq+1 ×R →Mn we construct a geometric realization of
the algebra C̄(q)(T̄ ) ⊂ Λ∗(Sq+1×R), realizing all C̄(q)

p (T̄ ), starting from F ∗(C̄(q)
0 ) =

F ∗(T̄ ) rather than from the minimal model.

Proposition. Each element z ∈ Hq+1(C̄(q)(T̄ )) generates a linear form on the
homotopy groups

Hanal : πq+1(Mn) → R.

In this construction we can talk of rigidity relative to deformations of a subalge-
bra Tλ ⊂ Λ(Mn) or a homomorphism of some algebra T → Λ∗(Mn). The standard
Hurewicz homomorphism becomes a special case of this construction (it is a rigid
case; here T is the minimal model or the algebra of all forms). Another simple case
is the subalgebra T consisting of the two forms Ωk and Ωl, dΩk = dΩl = 0, where
Ωk ∧ Ωl = 0. The formula∫

Sk+l+1
vk−1 ∧ F ∗(Ωl), dvk−1 = F ∗(Ωk)

is homotopy-invariant and non-trivial on the Whitehead products (it is non-rigid).

§ 4. Many-valued functionals

We consider the space L of smooth maps f : Sq →Mn that are null-homotopic,
f ∼ 0. The group πq(L) is the same as πq+1(Mn).

Problem. To construct many-valued functionals S{f} on L, that is, closed 1-forms
δS on L by a natural analytic method. To classify all such many-valued S for which
δS is a local form depending on f and finitely many derivatives of it (that is, the
Euler–Lagrange equation is a differential equation).

A natural analytic construction of many-valued functional follows from out pre-
vious results.

Theorem 2. A many-valued functional on L is well-defined by (26):

(26) Su{f} =
∫
Dq+1

Ru

for any u ∈ Hq+1(C̄(q)
n ) and a geometric realization ψ of the minimal model A in

Λ∗(Mn). Here f : Dq+1 →Mn is a functional depending only on f on the boundary
∂Dq+1 = Sq. If H(q)∗

n (u) = 0, then (26) is single-valued. For rigid elements, this
condition is also necessary. In the subgroup of rigid elements

Hq+1
st ⊂ Hq+1(C̄(q)

n )
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there is an integral lattice Zm ⊂ Hq+1
st independent of ψ such that the amplitude

exp{iSu(j)} for u ∈ Zm is a single-valued functional (“quantization condition”).

Remark 1. We always assume in what follows that all the operations d−1(ω) in the
construction of Su(f) are uniquely determined, where dv = ω, δv = ∗d ∗ (v) = 0 for
all exact forms ω that occur in the constructions.

Remark 2. The simplest example q = 2, M2 = S2 is the density of the standard
Hopf invariant. This many-valued functional Su{f} was mentioned to the author
by Polyakov and Wigman who have shown that δSu is local.

An important problem is to clarify when the variational derivative δSu is local.
“Local” many-valued functionals such that S{f} depends on f and finitely many
derivatives of it were determined by the author in 1981 (see [1]), and were then
fully classified in § 4 of the survey [2]. They have the form

(27) S{f} = S0{f}+
∫

(Nq,f)

d−1(Ω),

where f : Nq → Mn, Nq is closed, and Ω is an arbitrary closed (q + 1)-form in
Mn (more generally, there is a fibration E → Nq with base Nq and fibre Mn); the
form Ω is taken in E, dΩ = 0, and we consider the space of sections f : Nq → E.
Here, S0 is an arbitrary single-valued local functional. This situation, however, can
occur for q < n− 1. Suppose that Nq = Sq and that the Q-type of Mn is different
from Sn.

Conjecture. For n < q + 1 there are no other many-valued functionals with a
single-valued local δS than those described by (26).
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