Skip to main content

Advertisement

Log in

Novel Statistical Designs for Phase I/II and Phase II Clinical Trials With Dose-Finding Objectives

  • Statistics
  • Published:
Therapeutic Innovation & Regulatory Science Aims and scope Submit manuscript

Abstract

In modern drug development, there has been an increasing interest in adaptive clinical trials—research designs that allow judicious modification of certain aspects of an ongoing clinical trial based on prespecified criteria according to accumulating data to achieve predetermined experimental objectives. A particularly important application of adaptive designs is in phase I and II stages of drug development. Many novel adaptive designs have been proposed in the context of phase I oncology trials of cytotoxic agents where acceptable toxicity frequently translates into therapeutic response. However, an assessment of efficacy measurements based on biomarkers in early development is also very important. The current paper gives an overview of adaptive designs for early development studies that utilize efficacy measurements in design adaptation rules. These include seamless phase I/II designs, where efficacy and safety considerations are both incorporated in dose-finding objectives, and phase II dose-response studies, which typically aim at establishing a dose-response relationship with respect to some efficacy outcome and at identifying the most promising doses to be tested in subsequent confirmatory trials. The authors discuss statistical, logistical, and regulatory aspects of these designs and provide perspectives on their applications in modern clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scannell JW, Blanckley A, Boldon H, Warrington B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Disc. 2012;11:191–200.

    Article  CAS  Google Scholar 

  2. US Food and Drug Administration. Innovation or stagnation: Challenge and opportunity on the critical path to the new medical products. http://www.fda.gov/downloads/ScienceResearch/SpecialTopics/CriticalPathInitiative/CriticalPathOpportunitiesReports/ucm113411.pdf. Accessed February 19, 2014.

  3. US Food and Drug Administration. Innovation or stagnation: critical path opportunities list. http://www.fda.gov/downloads/scienceresearch/specialtopics/criticalpathinitiative/criticalpathopportunitiesreports/UCM077258.pdf. Accessed February 19, 2014.

  4. Dragalin V. Adaptive designs: terminology and classification. Drug Inf J. 2006;40:425–435.

    Article  Google Scholar 

  5. Pong A, Chow SC. Handbook of Adaptive Designs in Pharmaceutical and Clinical Development. Boca Raton, FL: CRC Press; 2010.

    Google Scholar 

  6. Chow SC, Chang M. Adaptive Design Methods in Clinical Trials. 2nd ed. Boca Raton, FL: Chapman & Hall / CRC Biostatistics Series; 2011.

    Book  Google Scholar 

  7. Drug Info J. 2006;40(6). [Special issue: PhRMA Working Group on Adaptive Designs]

  8. Biometrical J. 2006;48(4). [Special issue on adaptive designs]

  9. Stat Biopharm Res. 2010;2(4). [Special section on adaptive and model-based dose-ranging studies]

  10. J Biopharm Stat. 2010;20(6). [Special theme for adaptive designs]

  11. J Biopharm Stat. 2012;22(4). [Special technical issue on adaptive designs for clinical trials]

  12. Committee for Medicinal Products for Human Use. Reflection paper on methodological issues in confirmatory clinical trials with an adaptive design. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003616.pdf. Accessed February 19, 2014.

  13. US Food and Drug Administration. Guidance for industry: adaptive design clinical trials for drugs and biologics (draft document). http://www.fda.gov/downloads/DrugsGuidanceComplianceRegulatoryInformation/Guidances/UCM201790.pdf. Accessed February 19, 2014.

  14. Gallo P, Chuang-Stein C, Dragalin V, Gaydos B, Krams M, Pinheiro J. Adaptive designs in clinical drug development: an executive summary of the PhRMA working group (with discussion). J Biopharm Stat. 2006;16:275–312.

    Article  PubMed  Google Scholar 

  15. Chow SC, Chang M. Adaptive design methods in clinical trials: a review. Orphanet J Rare Dis. 2008;3:11.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chevret S. Statistical Methods for Dose-Finding Experiments. New York, NY: Wiley; 2006.

    Book  Google Scholar 

  17. Dragalin V. Seamless phase I/II designs. In: Pong A, Chow S-C, eds. Handbook of Adaptive Designs in Pharmaceutical and Clinical Development. Boca Raton, FL: CRC Press; 2010:chap 12.

    Google Scholar 

  18. Hunsberger S, Rubinstein LV, Dancey J, Korn EL. Dose escalation trial designs based on a molecularly targeted endpoint. Stat Med. 2005;24:2171–2181.

    Article  PubMed  Google Scholar 

  19. Yin G, Zheng S, Xu J. Two-stage dose finding for cytostatic agents in phase I oncology trials. Stat Med. 2013;32:644–660.

    Article  PubMed  Google Scholar 

  20. O’Quigley J, Hughes MD, Fenton T. Dose-finding designs for HIV studies. Biometrics. 2001;57:1018–1029.

    Article  PubMed  Google Scholar 

  21. Bretz F, Hsu J, Pinheiro J, Liu Y. Dose finding: a challenge in statistics. Biom J. 2008;50:480–504.

    Article  PubMed  Google Scholar 

  22. European Medicines Agency. ICH topic E4: Dose-response information to support drug registration. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E4/Step4/E4_Guideline.pdf Accessed February 19, 2014.

  23. Gaydos B, Krams M, Perevozskaya I, et al. Adaptive dose-response studies. Drug Inf J. 2006;40:451–461.

    Article  Google Scholar 

  24. Bretz F, Pinheiro J, Branson M. Combining multiple comparisons and modeling techniques in dose-response studies. Biometrics. 2005;61:738–748.

    Article  CAS  PubMed  Google Scholar 

  25. Bornkamp B, Bretz F, Dette H, Pinheiro J. Response-adaptive dose-finding under model uncertainty. Ann Appl Stat. 2011;5(2B):1611–1631.

    Article  Google Scholar 

  26. Ivanova A, Bolognese JA, Perevozskaya I. Adaptive dose finding based on t statistic for dose-response studies. Stat Med. 2008;27:1581–1592.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gooley TA, Martin PJ, Fisher LD, Pettinger M. Simulation as a design tool for phase I/II clinical trials: an example from bone marrow transplantation. Control Clin Trials. 1994;15:450–462.

    Article  CAS  PubMed  Google Scholar 

  28. Durham SD, Flournoy N, Li W. A sequential design for maximizing the probability of a favourable response. Can J Stat. 1998;26:479–495.

    Article  Google Scholar 

  29. Ivanova A. A new dose-finding design for bivariate outcomes. Biometrics. 2003;59:1001–1007.

    Article  PubMed  Google Scholar 

  30. Thall PF. Bayesian models and decision algorithms for complex early phase clinical trials. Stat Sci. 2010;25:227–244.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Durham SD, Flournoy N, Rosenberger WF. A random walk rule for phase I clinical trials. Biometrics. 1997;53:745–760.

    Article  CAS  PubMed  Google Scholar 

  32. Kpamegan EE, Flournoy N. An optimizing up-and-down design. In: Atkinson A, Bogacka B, Zhiglyavsky AA, eds. Optimum Design 2000. Norwell, MA: Kluwer Academic Publishers; 2001:chap 19.

    Google Scholar 

  33. Kpamegan EE, Flournoy N. Up-and-down designs for selecting the dose with maximum success probability. Seq Anal. 2008;27:78–96.

    Article  Google Scholar 

  34. Zohar S, O’Quigley J. Optimal designs for estimating the most successful dose. Stat Med. 2006;25:4311–4320.

    Article  PubMed  Google Scholar 

  35. Dragalin V, Fedorov V. Adaptive designs for dose-finding based on efficacy-toxicity response. J Stat Plan Inference. 2006;136:1800–1823.

    Article  Google Scholar 

  36. Hardwick J, Meyer MC, Stout QF. Directed walk designs for dose-response problems with competing failure modes. Biometrics. 2003;59:229–236.

    Article  PubMed  Google Scholar 

  37. Kiefer J, Wolfowitz J. Stochastic estimation of the maximum of a regression function. Ann Math Stat. 1952;23:457–461.

    Article  Google Scholar 

  38. Rosenberger WF. New directions in adaptive designs. Stat Sci. 1996;11:137–149.

    Article  Google Scholar 

  39. Thall PF, Russell KT. A strategy for dose finding and safety monitoring based on efficacy and adverse outcomes in phase I/II clinical trials. Biometrics. 1998;54:532–540.

    Article  Google Scholar 

  40. Thall PF, Cook JD. Dose-finding based on efficacy-toxicity trade-offs. Biometrics. 2004;60:684–693.

    Article  PubMed  Google Scholar 

  41. Thall PF, Cook JD, Estey EH. Adaptive dose selection using efficacy-toxicity trade-offs: illustrations and practical considerations. J Biopharm Stat. 2006;16:623–638.

    Article  PubMed  Google Scholar 

  42. Thall PF, Nguyen HQ, Estey EH. Patient-specific dose finding based on bivariate outcomes and covariates. Biometrics. 2008;64:1126–1136.

    Article  PubMed  Google Scholar 

  43. O’Quigley J, Pepe M, Fisher L. Continual reassessment method: a practical design for phase I clinical studies in cancer. Biometrics. 1990;46:33–48.

    Article  PubMed  Google Scholar 

  44. Zohar S, O’Quigley J. Identifying the most successful dose (MSD) in dose-finding studies in cancer. Pharm Stat. 2006;5:187–199.

    Article  PubMed  Google Scholar 

  45. Braun TM. The bivariate continual reassessment method: extending the CRM to phase I trials of two competing outcomes. Control Clin Trials. 2002;23:240–256.

    Article  PubMed  Google Scholar 

  46. Zhang W, Sargent DJ, Mandrekar S. An adaptive dose-finding design incorporating both toxicity and efficacy. Stat Med. 2006;25:2365–2383.

    Article  PubMed  Google Scholar 

  47. Seegers V, Chevret S, Resche-Rigon M. Dose-finding design driven by efficacy in onco-hematology phase I/II trials. Stat Med. 2011;30:1574–1583.

    CAS  PubMed  Google Scholar 

  48. Zhong W, Koopmeiners JS, Carlin BP. A trivariate continual reassessment method for phase I/II trials of toxicity, efficacy, and surrogate efficacy. Stat Med. 2012;30:3885–3895.

    Article  Google Scholar 

  49. Whitehead J, Zhou Y, Stevens J, Blakey G. An evaluation of a Bayesian method of dose escalation based on bivariate binary responses. J Biopharm Stat. 2004;14:969–983.

    Article  PubMed  Google Scholar 

  50. Whitehead J, Zhou Y, Stevens J, Blakey G, Price J, Leadbetter J. Bayesian decision procedures for dose-escalation based on evidence of undesirable events and therapeutic benefit. Stat Med. 2006;25:37–53.

    Article  PubMed  Google Scholar 

  51. Loke YC, Tan SB, Cai YY, Machin D. A Bayesian dose finding design for dual endpoint phase I trials. Stat Med. 2006;25:3–22.

    Article  PubMed  Google Scholar 

  52. Wang M, Day R. Adaptive Bayesian design for phase I dose-finding trials using a joint model of response and toxicity. J Biopharm Stat. 2010;20:125–144.

    Article  CAS  PubMed  Google Scholar 

  53. Houede N, Thall PF, Nguyen H, Paoletti X, Kramar A. Utility-based optimization of combination therapy using ordinal toxicity and efficacy in phase I/II trials. Biometrics. 2010;66:532–540.

    Article  PubMed  Google Scholar 

  54. Dragalin V, Fedorov V, Wu Y. Two-stage design for dose-finding that accounts for both efficacy and safety. Stat Med. 2008;27:5156–5176.

    Article  PubMed  Google Scholar 

  55. Bekele BN, Shen Y. A Bayesian approach to jointly modeling toxicity and biomarker expression in a phase I/II dose-finding trial. Biometrics. 2005;61:344–354.

    Google Scholar 

  56. Zhou Y, Whitehead J, Bonvini E, Stevens JW. Bayesian decision procedures for binary and continuous bivariate dose-escalation studies. Pharm Stat. 2006;5:125–133.

    Article  PubMed  Google Scholar 

  57. Hirakawa A. An adaptive dose finding approach for correlated bivariate binary and continuous outcomes in phase I oncology trials. Stat Med. 2012;31:516-532.

    Article  PubMed  Google Scholar 

  58. Yuan Y, Yin G. Bayesian dose finding by jointly modeling toxicity and efficacy as time-to-event outcomes. Appl Stat. 2009;58:719–736.

    Google Scholar 

  59. Lei X, Yuan Y, Yin G. Bayesian phase II adaptive randomization by jointly modeling time-to-event efficacy and binary toxicity. Lifetime Data Anal. 2011;17:156–174.

    Article  PubMed  Google Scholar 

  60. Mandrekar SJ, Cui Y, Sargent DJ. An adaptive phase I design for identifying a biologically optimal dose for dual agent drug combinations. Stat Med. 2007;26:2317–2330.

    Article  PubMed  Google Scholar 

  61. Huang X, Biswas S, Oki Y, Issa JP, Berry DA. A parallel phase I/II clinical trial design for combination therapies. Biometrics. 2007;63:429–436.

    Article  CAS  PubMed  Google Scholar 

  62. Dragalin V, Fedorov V, Wu Y. Adaptive designs for selecting drug combinations based on efficacy-toxicity response. J Stat Plan Inference. 2008;138:352–373.

    Article  Google Scholar 

  63. Li Y, Bekele BN, Ji Y, Cook JD. Dose-schedule finding in phase I/II clinical trials using a Bayesian isotonic transformation. Stat Med. 2008;27:4895–4913.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zhang J, Braun T. A phase I Bayesian adaptive design to simultaneously optimize dose and schedule assignments both between and within patients. J Am Stat Assoc. 2013;108:892–901.

    Article  CAS  Google Scholar 

  65. Ruberg SL., Dose response studies I. Some design considerations. J Biopharm Stat. 1995;5:1–14.

    Article  CAS  PubMed  Google Scholar 

  66. Ruberg SL., Dose response studies II. Analysis and interpretation. J Biopharm Stat. 1995;5:15–42.

    Article  CAS  PubMed  Google Scholar 

  67. Phillips A. A review of the performance of tests used to establish whether there is a drug effect in dose-response studies. Drug Inf J. 1998;32:683–692.

    Article  Google Scholar 

  68. Hochberg Y, Tamhane AC. Multiple Comparison Procedures. New York, NY: Wiley; 1987.

    Book  Google Scholar 

  69. Neuhäuser M, Liu PY, Hothorn LA. Nonparametric tests for trend: Jonckheere’s test, a modification and a maximum test. Biom J. 1998;40:899–909.

    Article  Google Scholar 

  70. Bretz F. An extension of the Williams trend test to general unbalanced linear models. Comput Stat Data Anal. 2006;50:1735–1748.

    Article  Google Scholar 

  71. Hothorn LA, Djira GD. A ratio-to-control Williams-type test for trend. Pharm Stat. 2011;10:289–292.

    Article  PubMed  Google Scholar 

  72. Hothorn LA, Bretz F. Evaluation of animal carcinogenicity studies: Cochran-Armitage trend test vs. maximum tests. Biom J. 2000;42:553–567.

    Article  Google Scholar 

  73. Dunnett CW. A multiple comparison procedure for comparing several treatments with a control. J Am Stat Assoc. 1955;50:1096–1121.

    Article  Google Scholar 

  74. Tamhane AC, Logan BR. Multiple comparison procedures in dose-response studies. In: Ting N, ed. Dose Finding in Drug Development. New York, NY: Springer; 2006:chap 11.

    Google Scholar 

  75. Dragalin V, Hsuan F, Padmanabhan SK. Adaptive designs for dose-finding studies based on sigmoid Emax model. J Biopharm Stat. 2007;17:1051–1070.

    Article  PubMed  Google Scholar 

  76. Miller F, Guilbaud O, Dette H. Optimal designs for estimating the interesting part of a dose-effect curve. J Biopharm Stat. 2007;17:1097–1115.

    Article  PubMed  Google Scholar 

  77. Hu C, Dong Y. Estimating the predictive quality of dose-response after model selection. Stat Med. 2007;26:3114–3139.

    Article  PubMed  Google Scholar 

  78. Bornkamp B, Bretz F, Pinheiro J, Dette H. MCPMod: an R package for the design and analysis of dose-finding studies. J Stat Software. 2009;29:1–23.

    Article  Google Scholar 

  79. Tymofyeyev Y, Rosenberger WF, Hu F. Implementing optimal allocation in sequential binary response experiments. J Am Stat Assoc. 2007;102:224–234.

    Article  CAS  Google Scholar 

  80. Sverdlov O, Rosenberger WF. On recent advances in optimal allocation designs in clinical trials. J Stat Theory Practice. 2013;7:753–773.

    Article  Google Scholar 

  81. Hu F, Rosenberger WF. The Theory of Response-Adaptive Randomization in Clinical Trials. New York, NY: Wiley; 2006.

    Book  Google Scholar 

  82. Hu F, Zhang LX. Asymptotic properties of doubly adaptive biased coin designs for multitreatment clinical trials. Ann Stat. 2004;32:268–301.

    Google Scholar 

  83. Zhang LX, Hu F, Cheung SH, Chan WS. Immigrated urn models: theoretical properties and applications. Ann Stat. 2011;39:643–671.

    Article  Google Scholar 

  84. Perevozskaya I, Rosenberger WF, Haines LM. Optimal design for the proportional odds model. Can J Stat. 2003;31:225–235.

    Article  Google Scholar 

  85. Fan SK, Chaloner K. Optimal designs and limiting optimal designs for a trinomial response. J Stat Plan Inference. 2004;126:347–360.

    Article  Google Scholar 

  86. Biedermann S, Dette H, Zhu W. Optimal designs for dose-response models with restricted design spaces. J Am Stat Assoc. 2006;101:747–759.

    Article  CAS  Google Scholar 

  87. Biedermann S, Dette H, Zhu W. Compound optimal designs for percentile estimation in dose-response models with restricted design intervals. J Stat Plan Inference. 2006;137:3838–3847.

    Article  Google Scholar 

  88. Dette H, Bretz F, Pepelyshev A, Pinheiro J. Optimal designs for dose-finding studies. J Am Stat Assoc. 2008;103:1225–1237.

    Article  CAS  Google Scholar 

  89. Dette H, Kiss C, Bevanda M, Bretz F. Optimal designs for the Emax, log-linear and exponential models. Biometrika. 2010;97:513–518.

    Article  Google Scholar 

  90. Bretz F, Dette H, Pinheiro J. Practical considerations for optimal designs in clinical dose finding studies. Stat Med. 2010;29:731–742.

    Article  PubMed  Google Scholar 

  91. Bornkamp B, Bretz F, Dmitrienko A, et al. Innovative approaches for designing and analyzing adaptive dose-ranging trials. J Biopharm Stat. 2007;17:965–995.

    Article  PubMed  Google Scholar 

  92. Dragalin V, Bornkamp B, Bretz F, et al. A simulation study to compare new adaptive dose-ranging designs. Stat Biopharm Res. 2010;2:487–512.

    Article  Google Scholar 

  93. Pinheiro J, Bornkamp B, Bretz F. Design and analysis of dose-finding studies combining multiple comparisons and modeling procedures. J Biopharm Stat. 2006;16:639–656.

    Article  PubMed  Google Scholar 

  94. Krams M, Lees KR, Hacke W, et al. ASTIN: An adaptive dose-response study of UK-279,276 in acute ischemic stroke. Stroke. 2003;34:2543–2548.

    Article  CAS  PubMed  Google Scholar 

  95. Padmanabhan SK, Dragalin V. Adaptive Dc-optimal designs for dose finding based on a continuous efficacy endpoint. Biom J. 2010;52:836–852.

    Article  PubMed  Google Scholar 

  96. Smith MK, Jones I, Morris MF, Grieve AP, Tan K. Implementation of a Bayesian adaptive design in a proof of concept study. Pharm Stat. 2006;5:39–50.

    Article  PubMed  Google Scholar 

  97. Weir CJ, Spiegelhalter DJ, Grieve AP. Flexible design and efficient implementation of adaptive dose-finding studies. J Biopharm Stat. 2007;17:1033–1050.

    Article  PubMed  Google Scholar 

  98. Berry SM, Spinelli W, Littman GS, et al. A Bayesian dose-finding trial with adaptive dose expansion to flexibly assess efficacy and safety of an investigational drug. Clin Trials. 2010;7:121–135.

    Article  PubMed  Google Scholar 

  99. Pinheiro J, Sax F, Antonijevic Z, et al. Adaptive and model-based dose-ranging trials: quantitative evaluation and recommendations: white paper of the PhRMA working group on adaptive dose-ranging studies. Stat Biopharm Res. 2010;2:435–468.

    Article  Google Scholar 

  100. Rosenberger WF, Haines L. Competing designs for phase I clinical trials: a review. Stat Med. 2002;21:2757–2770.

    Article  PubMed  Google Scholar 

  101. Antonijevic Z, Gallo P, Chuang-Stein C, et al. Views on emerging issues pertaining to data monitoring committees for adaptive trials. Therapeutic Innovation & Regulatory Science. 2013;47:495–502.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr Sverdlov PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sverdlov, O., Wong, W.K. Novel Statistical Designs for Phase I/II and Phase II Clinical Trials With Dose-Finding Objectives. Ther Innov Regul Sci 48, 601–612 (2014). https://doi.org/10.1177/2168479014523765

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/2168479014523765

Keywords

Navigation