7

Supplementary Fig.1: Intracellular localization S antigen expressed in HeLa cells

 transformed with WT mRNA. Cells transformed with WT mRNA were fixed, permeabilized and stained with antibodies for Spike protein (green) and KDEL (red), an endoplasmic reticulum marker. Samples were then examined using confocal microscopy. The left column represents an overlay of Spike protein and KDEL, while the right column shows the spike protein signal superimposed on a transmitted light channel.

Supplementary Fig. 2: Intracellular localization S antigen expressed in HeLa cells
transformed with 2P mRNA. Cells transformed with 2P mRNA were fixed, permeabilized and stained with antibodies for Spike protein (green) and KDEL (red), an endoplasmic reticulum marker. Samples were then examined using confocal microscopy. The left column represents an overlay of Spike protein and KDEL signals, while the right column shows the spike protein signal superimposed on a transmitted light channel.

Supplementary Figure 3: Intracellular localization S antigen expressed in HeLa cells transformed with GSAS mRNA. Cells transformed with GSAS mRNA were fixed, permeabilized and stained with antibodies for Spike protein (green) and KDEL (red), an endoplasmic reticulum marker. Samples were then examined using confocal microscopy. The left column represents an overlay of Spike protein and KDEL signals, while the right column shows the spike protein signal superimposed on a transmitted light channel.

Supplementary Fig. 4: Intracellular localization S antigen expressed in HeLa cells transformed with 2P/GSAS mRNA. Cells transformed with 2P/GSAS mRNA were fixed, permeabilized and stained with antibodies for Spike protein (green) and KDEL (red), an endoplasmic reticulum marker. Samples were then examined using confocal microscopy. The left column represents an overlay of Spike protein and KDEL signals, while the right column shows the spike protein signal superimposed on a transmitted light channel.

Supplementary Fig. 5: Intracellular localization S antigen expressed in HeLa cells transformed with 2P/GSAS/ALAYT mRNA. Cells transformed with 2P/GSAS/ALAYT mRNA were fixed, permeabilized and stained with antibodies for Spike protein (green) and KDEL (red), an endoplasmic reticulum marker. Samples were then examined using confocal microscopy. The left column represents an overlay of Spike protein and KDEL signals, while the right column shows the spike protein signal along superimposed on a transmitted light channel.

Supplementary Fig. 6: Intracellular localization S antigen expressed in HeLa cells transformed with 6P mRNA Cells transformed with 6P mRNA were fixed, permeabilized and stained with antibodies for Spike protein (green) and KDEL (red), an endoplasmic reticulum marker. Samples were then examined using confocal microscopy. The left column represents an overlay of Spike protein and KDEL signals, while the right column shows the spike protein signal superimposed on a transmitted light channel.

Supplementary Fig. 7: Intracellular localization S antigens expressed in HeLa cells transformed with 6P/GSAS mRNA. Cells transformed with 6P/GSAS mRNA were fixed, permeabilized and stained with antibodies for Spike protein (green) and KDEL (red), an endoplasmic reticulum marker. Samples were then examined using confocal microscopy. The left column represents an overlay of Spike protein and KDEL signals, while the right column shows the spike protein signal superimposed on a transmitted light channel.

Supplementary Fig. 8: Relative degree (score) of surface localization of S-proteins based on visual inspection of HeLa cells transformed with mRNAs.

Supplementary Fig. 9 Comparison of antibody binding responses against S antigen

 formulations in mice and NHPs. Serum binding antibody titers in mice (a) and NHPs (b) immunized with mRNA vaccines WT, 2P, GSAS, 2P/GSAS, 2P/GSAS/ALAYT, 6P, and 6P/GSAS. Briefly,BALB/c female mice ($n=8$) or Cynomolgus monkeys ($\mathrm{n}=4$) were immunized twice three weeks apart with $0.4 \mu \mathrm{~g}$ or $5 \mu \mathrm{~g}$ of mRNA vaccines formulations respectively. 2 P , GSAS and GSAS/2P (MRT5500) were tested in both animal models, while WT was tested only in mice.Sera samples from pre-immunized animals (Pre-; D-4) as well as samples collected on D14, 21, 28, 35, 42 (NHP only) were tested for reactivity to recombinant S protein in ELISA or tested in a pseudoviurs neutralization assay (Fig. 2). Each dot represents an individual serum sample, and the line represents the geometric mean for the group. the dotted line below for each panel represents the lower limit of assay readout..

Supplementary Fig.10: MRT5500 induces Th $_{\mathbf{H}} 1$-biased T-cell responses in mice. (a) IFNy and (b) IL-5 ELISPOT D35 data for the 5 and $10 \mu \mathrm{~g}$ doses. Following re-stimulation with Sprotein peptides, pooled splenocytes MRT5500-immunized mouse groups secreted predominantly IFN ${ }_{\gamma}\left(\mathrm{T}_{\mathrm{H}} 1\right)$ whereas $\operatorname{IL}-5\left(\mathrm{~T}_{\mathrm{H}} 2\right)$ secretion was marginal.

Supplementary Fig.11: MRT5500 elicited strong anti-spike antibody binding response in NHPs. Briefly, Nunc MaxiSorb plates were coated with SARS-CoV S-GCN4 protein (custom made at GeneArt) at $0.5 \mu \mathrm{~g} / \mathrm{mL}$ in PBS overnight at $4^{\circ} \mathrm{C}$. Plates were washed 3 times with PBSTween 0.1% before blocking with 1% BSA in PBS-Tween 0.1% for 1 h at ambient temperature. Samples were plated with 1:450 initial dilution followed by 3-fold, 7-point serial dilution in blocking buffer. Plates were washed 3 times after 1 h incubation at room temperature before adding $50 \mu \mathrm{~L}$ of 1:5000 Rabbit anti-human IgG (Jackson Immuno Research) to each well. Plates were incubated at room temperature for 1 hr and washed 3 x . Plates were developed using Pierce 1-Step Ultra TMB-ELISA Substrate Solution for 0.1 h and stopped by TMB stop solution. Plates were read at 450 nm in SpectraMax plate reader. Antibody titers were reported as the highest dilution that is ≥ 0.2 Optical Density (OD) cutoff.

Supplementary Fig. 12: Strong correlations between individual NHP ELISA, PsV and MN time-point titers (see also Supplementary Table 2). Top panel A: 4 subjects in 15μ g dose;
Middle panel B: 4 subjects in $45 \mu \mathrm{~g}$ dose; Bottom panel C: 4 subjects in $135 \mu \mathrm{~g}$ dose.

Supplementary Fig. 13: PsV titers in mice for the $1 \mu \mathrm{~g}, 5 \mu \mathrm{~g}$ and $10 \mu \mathrm{~g}$ dose levels of MRT5500 were significantly different from the Human Convalescent sera PsV titers

Supplementary Fig. 14: Comparison of D35 MRT5500 titers to human convalescent sera PsV titers in NHPs for the $15 \mu \mathrm{~g}, \mathbf{4 5} \mu \mathrm{~g}$ and $135 \mu \mathrm{~g}$ dose levels of MRT5500 were significantly different from the Human Convalescent sera PsV titers.

Supplementary Fig. 15: Protective efficacy of MRT5500 in hamster disease model. Low magnification representative photomicrographs (H\&E) of lungs from hamsters receiving one or two doses of MRT5500 at increasing doses. In Sham (placebo) animals, more than 50% of the lung parenchyma is disrupted by marked inflammatory cell infiltrate, type II pneumocyte hyperplasia, multifocal hemorrhage, syncytial cells and cellular debris in hamsters treated once with the lowest dose represented by multifocal dark purple regions (arrows). Note, substantially reduced affected areas in lungs of hamsters receiving two doses and increasing doses. More than 50% of the lung parenchyma is disrupted in placebo treated mice as compared to naïve hamsters. Briefly, animals were immunized on $\mathrm{D} 0,21$ with $0.15 \mu \mathrm{~g}, 1.5 \mu \mathrm{~g}, 4.5 \mu \mathrm{~g}$, or $13.5 \mu \mathrm{~g}$ of MRT5500 and challenged on D42 with $10^{6} \mathrm{pfu}$ of SARS-CoV-2 intranasally (IN). Weight of

animals was monitored on daily basis.

Supplementary Fig.16: Pre-challenge MRT5500 neutralizing and ELISA titers in hamsters.
Plaque reduction neutralization (PRNT50; a) and ELISA (b) titers in sera of MRT5500 vaccinated animals collected on D35 (one dose regimen) or D42 (two dose regimen). Briefly, hamsters were immunized either on D0 (one dose immunization) or D0, 21 (two doses immunizations) with $0.15 \mu \mathrm{~g}, 1.5 \mu \mathrm{~g}, 4.5 \mu \mathrm{~g}$, or $13.5 \mu \mathrm{~g}$ of MRT5500 and challenged on D49 with $10^{4} \mathrm{pfu}$ of SARS-CoV-2 intranasally (IN).

Supplementary Fig. 17: Example of D7 post challenge histopathology findings in lungs of hamsters. Representative photomicrographs (H\&E) of lungs from a SARS-CoV-2 inoculated and placebo-treated hamster (a-c) and a naïve hamster (d-f). Normal lung parenchyma is disrupted by marked inflammatory cell infiltrate, type II pneumocyte hyperplasia, multifocal hemorrhage, syncytial cells, and cellular debris in infected hamster lung (b) as compared to normal parenchyma in naïve hamster lung (e). Bronchiolar epithelium (arrows) is markedly hyperplastic in infected lung sample (c) and histologically unremarkable in the naïve lung (f).

Supplementary Fig.18: Example of D7 post challenge histopathology in lungs of hamsters receiving one dose or two doses at $\mathbf{1 . 5} \boldsymbol{\mu}$ g MRT5500. Representative lung photomicrographs (H\&E). (a) Multiple foci of inflammatory cell infiltrate, type II pneumocyte hyperplasia, syncytial cells and cellular debris (arrows) are present in a hamster treated with a single $1.5 \mu \mathrm{~g}$ dose. (c) Higher magnification of boxed area in image a. Lung sections from a hamster treated with two $1.5 \mu \mathrm{~g}$ doses (b and d) appear histologically unremarkable.

One dose

Supplementary Fig.19: Hamster challenge study. Individual weight loss by groups

Supplementary Table 1: Pairwise dose comparison in PsV neutralization titers on D35 in mice. There were no statistically significant differences in PsV titers among the $1 \mu \mathrm{~g}, 5 \mu \mathrm{~g}$ and $10 \mu \mathrm{~g}$ dose levels, while at the lowest dose level $(0.2 \mu \mathrm{~g}) \mathrm{PsV}$ titers were significantly different from those obtained with the higher dose levels.

| Pairwise dose comparisons |
| :--- | :--- | :--- |
| PsVNa titers on D35 in mice | | Fold Difference |
| :--- |
| $(95 \% \mathrm{Cl})$ |$\quad \mathrm{p}$-value.

Comparison: Group1 versus Group2

* /X.X: Group1 is X.X-fold lower than group2
${ }^{* *}{ }_{x} X . X$: Group 1 is X. X-fold higher than group 2

Supplementary Table 2: Spearman Correlation Coefficients (SCC) between ELISA (IgG), Pseudoviral (PsV) and Microneutralization (MN) titers. SCC were conducted per individual animals (Suppl. Fig.4) and Means (95\% CI) were calculated per dose (N=4) or all NHPs (N=12)

		Spearman Correlation Coefficient*		
Dose	N	ELISA and MN	ELISA and PsV	MN and PsV
$15 \mu \mathrm{~g}$	4	$0.94(0.90,0.99)$	$0.95(0.90,1.00)$	$0.95(0.90,1.00)$
$45 \mu \mathrm{~g}$	4	$0.88(0.82,0.94)$	$0.90(0.82,0.97)$	$0.92(0.81,1.00)$
$135 \mu \mathrm{~g}$	4	$0.93(0.83,1.00)$	$0.88(0.77,0.98)$	$0.91(0.84,0.99)$
Total	12	$0.92(0.89,0.95)$	$0.91(0.87,0.94)$	$0.93(0.90,0.96)$

* Mean (95\% CI)

Weight D1 (g)

N	8	8	8	8
NMiss	0	0	0	0
Mean (SD)	$141.2(\pm 18.1)$	$147.2(\pm 14.7)$	$147.5(\pm 10.0)$	$146.7(\pm 10.5)$
Min;Max	$116.2 ; 172.9$	$129.8 ; 173.5$	$133.1 ; 163.3$	$127.6 ; 157.9$
Median [Q1;Q3]	$140.2[129.0 ; 151.2]$	$143.1[136.3 ; 157.8]$	$148.2[139.4 ; 154.4]$	$148.4[140.2 ; 155.5]$

Weight D2 (g)

	N	8	8	8	8
	NMiss	0	0	0	0
	Mean (SD)	137.9 ($\pm 18.2)$	144.3 ($\pm 14.3)$	146.1 (± 9.5)	144.9 ($\pm 10.4)$
	Min;Max	113.4;169.9	127.8;170.3	131.9;160.7	125.5;155.4
	Median [Q1;Q3]	137.1 [125.2;147.6]	140.3 [133.6;154.3]	146.5 [138.5;152.9]	148.4 [137.8;153.0]
Weight D3 (g)					
	N	8	8	8	8
	NMiss	0	0	0	0
	Mean (SD)	131.5 ($\pm 18.3)$	144.1 (± 13.6)	145.3 (± 9.6)	145.3 ($\pm 9.3)$
	Min;Max	106.9;162.2	126.4;167.8	131.1;159.5	128.5;155.0
	Median [Q1;Q3]	131.0 [118.3;142.3]	140.9 [134.2;154.1]	147.0 [137.1;152.0]	147.9 [138.6;152.9]
Weight D4 (g)					
	N	8	8	8	8
	NMiss	0	0	0	0
	Mean (SD)	128.1 (± 18.5)	145.2 ($\pm 13.4)$	148.1 (± 10.7)	146.6 ($\pm 10.3)$
	Min;Max	103.4;159.1	128.1;169.6	132.1;164.7	127.2;157.1
	Median [Q1;Q3]	126.8 [115.1;139.2]	142.3 [135.7;154.0]	149.7 [139.4;154.8]	149.0 [140.1;155.3]

Weight D3 (g)

	N	8	8	8	8
	NMiss	0	0	0	0
	Mean (SD)	137.9 ($\pm 18.2)$	144.3 ($\pm 14.3)$	146.1 (± 9.5)	144.9 ($\pm 10.4)$
	Min;Max	113.4;169.9	127.8;170.3	131.9;160.7	125.5;155.4
	Median [Q1;Q3]	137.1 [125.2;147.6]	140.3 [133.6;154.3]	146.5 [138.5;152.9]	148.4 [137.8;153.0]
Weight D3 (g)					
	N	8	8	8	8
	NMiss	0	0	0	0
	Mean (SD)	131.5 ($\pm 18.3)$	144.1 (± 13.6)	145.3 (± 9.6)	145.3 ($\pm 9.3)$
	Min;Max	106.9;162.2	126.4;167.8	131.1;159.5	128.5;155.0
	Median [Q1;Q3]	131.0 [118.3;142.3]	140.9 [134.2;154.1]	147.0 [137.1;152.0]	147.9 [138.6;152.9]
Weight D4 (g)					
	N	8	8	8	8
	NMiss	0	0	0	0
	Mean (SD)	128.1 (± 18.5)	145.2 ($\pm 13.4)$	148.1 (± 10.7)	146.6 ($\pm 10.3)$
	Min;Max	103.4;159.1	128.1;169.6	132.1;164.7	127.2;157.1
	Median [Q1;Q3]	126.8 [115.1;139.2]	142.3 [135.7;154.0]	149.7 [139.4;154.8]	149.0 [140.1;155.3]

Weight D4 (g)

	N	8	8	8	8
	NMiss	0	0	0	0
	Mean (SD)	137.9 ($\pm 18.2)$	144.3 ($\pm 14.3)$	146.1 (± 9.5)	144.9 ($\pm 10.4)$
	Min;Max	113.4;169.9	127.8;170.3	131.9;160.7	125.5;155.4
	Median [Q1;Q3]	137.1 [125.2;147.6]	140.3 [133.6;154.3]	146.5 [138.5;152.9]	148.4 [137.8;153.0]
Weight D3 (g)					
	N	8	8	8	8
	NMiss	0	0	0	0
	Mean (SD)	131.5 ($\pm 18.3)$	144.1 (± 13.6)	145.3 (± 9.6)	145.3 ($\pm 9.3)$
	Min;Max	106.9;162.2	126.4;167.8	131.1;159.5	128.5;155.0
	Median [Q1;Q3]	131.0 [118.3;142.3]	140.9 [134.2;154.1]	147.0 [137.1;152.0]	147.9 [138.6;152.9]
Weight D4 (g)					
	N	8	8	8	8
	NMiss	0	0	0	0
	Mean (SD)	128.1 (± 18.5)	145.2 ($\pm 13.4)$	148.1 (± 10.7)	146.6 ($\pm 10.3)$
	Min;Max	103.4;159.1	128.1;169.6	132.1;164.7	127.2;157.1
	Median [Q1;Q3]	126.8 [115.1;139.2]	142.3 [135.7;154.0]	149.7 [139.4;154.8]	149.0 [140.1;155.3]

Weight D5 (g)

N	4	4	4	4
NMiss	4	4	4	4
Mean (SD)	$113.8(\pm 12.5)$	$142.1(\pm 15.6)$	$142.0(\pm 10.3)$	$147.4(\pm 14.3)$
Min;Max	$100.1 ; 127.5$	$125.7 ; 155.5$	$131.8 ; 153.8$	$126.3 ; 157.0$
Median [Q1;Q3]	$113.9[103.5 ; 124.2]$	$143.6[128.7 ; 155.5]$	$141.2[133.5 ; 150.5]$	$153.2[138.5 ; 156.4]$

Weight D6 (g)

	N	4	4	4	4
	NMiss	4	4	4	4
Weight D7 (g)	Mean (SD)	$110.7(\pm 11.1)$	$142.7(\pm 16.2)$	$142.9(\pm 9.7)$	$148.6(\pm 14.6)$
	Min;Max	$98.4 ; 123.0$	$126.2 ; 157.8$	$133.7 ; 155.6$	$127.2 ; 158.4$
	Median [Q1;Q3]	$110.7[101.6 ; 119.8]$	$143.4[128.8 ; 156.6]$	$141.2[135.6 ; 150.3]$	$154.3[139.1 ; 158.0]$
	N	4	4	4	3
	NMiss	4	4	4	5
	Mean (SD)	$111.3(\pm 10.6)$	$142.3(\pm 15.6)$	$142.6(\pm 10.9)$	$145.4(\pm 15.6)$
	Min;Max	$99.9 ; 124.6$	$126.1 ; 156.0$	$132.2 ; 156.7$	$127.6 ; 156.9$
	Median [Q1;Q3]	$110.4[103.3 ; 119.4]$	$143.5[128.9 ; 155.7]$	$140.8[134.2 ; 151.1]$	$151.6[127.6 ; 156.9]$

Weight D7 (g)

	N	4	4	4	4
	NMiss	4	4	4	4
Weight D7 (g)	Mean (SD)	$110.7(\pm 11.1)$	$142.7(\pm 16.2)$	$142.9(\pm 9.7)$	$148.6(\pm 14.6)$
	Min;Max	$98.4 ; 123.0$	$126.2 ; 157.8$	$133.7 ; 155.6$	$127.2 ; 158.4$
	Median [Q1;Q3]	$110.7[101.6 ; 119.8]$	$143.4[128.8 ; 156.6]$	$141.2[135.6 ; 150.3]$	$154.3[139.1 ; 158.0]$
	N	4	4	4	3
	NMiss	4	4	4	5
	Mean (SD)	$111.3(\pm 10.6)$	$142.3(\pm 15.6)$	$142.6(\pm 10.9)$	$145.4(\pm 15.6)$
	Min;Max	$99.9 ; 124.6$	$126.1 ; 156.0$	$132.2 ; 156.7$	$127.6 ; 156.9$
	Median [Q1;Q3]	$110.4[103.3 ; 119.4]$	$143.5[128.9 ; 155.7]$	$140.8[134.2 ; 151.1]$	$151.6[127.6 ; 156.9]$

N	8	8	8	8
NMiss	0	0	0	0
Mean (SD)	$142.8(\pm 18.6)$	$150.3(\pm 15.3)$	$149.7(\pm 10.5)$	$148.9(\pm 10.7)$
Min;Max	$115.3 ; 175.0$	$132.6 ; 177.7$	$134.5 ; 165.9$	$129.6 ; 160.5$
Median [Q1;Q3]	$141.9[131.2 ; 153.0]$	$146.6[138.3 ; 161.2]$	$150.7[140.9 ; 157.1]$	$151.3[141.9 ; 157.2]$

Weight D0 (g)
Weight D1 (g)

MRT5500 ($0.15 \mu \mathrm{~g}) ~ M R T 5500(1.5 \mu \mathrm{~g}) \quad$ MRT5500 $(4.5 \mu \mathrm{~g})$ MRT5500 ($13.5 \mu \mathrm{~g}$)

Weight D0 (g)

				2	
		MRT5500 (0.15 $\mu \mathrm{g}$)	MRT5500 (1.5 $\mu \mathrm{g}$)	MRT5500 (4.5 $\mu \mathrm{g}$)	MRT5500 ($13.5 \mu \mathrm{~g}$)
Weight DO (g)					
	N	8	8	8	8
	NMiss	0	0	0	0
	Mean (SD)	146.2 ($\pm 17.0)$	152.9 ($\pm 13.0)$	149.0 ($\pm 14.3)$	158.6 ($\pm 9.3)$
	Min;Max	120.7;169.3	131.8;173.3	121.5;163.7	143.4;170.9
	Median [Q1;Q3]	144.2 [134.9;160.8]	152.1 [145.3;161.8]	151.4 [141.6;160.2]	158.8 [153.0;165.4]
Weight D1 (g)					
	N	8	8	8	8
	NMiss	0	0	0	0
	Mean (SD)	146.3 (± 16.1)	151.1 (± 13.5)	148.3 (± 14.7)	158.0 ($\pm 10.8)$
	Min;Max	121.0;165.9	126.4;170.1	120.9;163.9	141.2;171.4
	Median [Q1;Q3]	147.7 [134.4;159.7]	152.8 [143.4;160.0]	150.1 [139.8;160.9]	160.1 [148.9;166.9]
Weight D2 (g)					
	N	8	8	8	8
	NMiss	0	0	0	0
	Mean (SD)	143.6 ($\pm 14.9)$	149.9 ($\pm 13.9)$	145.6 ($\pm 14.8)$	154.5 ($\pm 10.3)$
	Min;Max	120.2;161.7	124.4;169.7	117.5;160.9	139.5;165.7
	Median [Q1;Q3]	144.6 [133.0;155.9]	153.8 [141.1;157.7]	147.9 [137.3;158.1]	154.7 [145.7;165.2]
Weight D3 (g)					
	N	8	8	8	8
	NMiss	0	0	0	0
	Mean (SD)	142.6 ($\pm 15.9)$	150.4 ($\pm 13.3)$	146.2 ($\pm 15.2)$	155.7 ($\pm 12.5)$
	Min;Max	119.8;163.9	126.1;168.5	118.1;162.1	137.8;169.9
	Median [Q1;Q3]	143.7 [129.8;154.9]	154.2 [141.8;158.6]	147.3 [138.0;159.4]	156.2 [144.6;168.2]
Weight D4 (g)					
	N	8	8	8	8
	NMiss	0	0	0	0
	Mean (SD)	143.9 ($\pm 15.8)$	152.5 (± 13.1)	148.2 ($\pm 14.8)$	157.1 ($\pm 11.9)$
	Min;Max	122.5;165.6	129.5;170.1	121.4;165.5	138.8;169.9
	Median [Q1;Q3]	144.6 [130.6;156.4]	155.5 [143.5;161.2]	149.2 [140.2;160.1]	158.7 [146.8;168.7]
Weight D5 (g)					
	N	4	4	4	4
	NMiss	4	4	4	4
	Mean (SD)	148.8 ($\pm 19.0)$	154.2 ($\pm 18.4)$	144.0 (± 18.1)	158.9 ($\pm 14.3)$
	Min;Max	121.7;166.0	129.2;173.3	119.1;162.5	138.9;171.6
	Median [Q1;Q3]	153.7 [136.7;160.9]	157.2 [142.6;165.9]	147.1 [132.8;155.2]	162.5 [148.9;168.9]
Weight D6 (g)					
	N	4	4	4	4
	NMiss	4	4	4	4
	Mean (SD)	147.7 ($\pm 21.7)$	154.0 (± 19.0)	143.2 (± 17.7)	158.3 ($\pm 15.6)$
	Min;Max	116.7;167.1	127.4;172.3	118.2;160.0	137.9;175.4
	Median [Q1;Q3]	153.4 [134.1;161.2]	158.2 [141.9;166.1]	147.3 [132.2;154.2]	160.0 [147.5;169.1]
Weight D7 (g)					
	N	4	4	4	4
	NMiss	4	4	4	4
	Mean (SD)	146.6 ($\pm 19.1)$	154.3 ($\pm 19.4)$	142.4 ($\pm 16.8)$	159.4 ($\pm 16.1)$
	Min;Max	119.3;163.8	126.7;171.3	118.7;158.2	139.3;178.3
	Median [Q1;Q3]	151.6 [134.9;158.3]	159.6 [141.5;167.1]	146.4 [131.7;153.2]	160.0 [148.4;170.4]

Supplementary Table 4. Hamster challenge data (2 dose regimen). Descriptive weight data analysis during 7 DPI

		Sham	Naive
Weight D0 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	149.2 ($\pm 14.3)$	146.6 ($\pm 14.8)$
	Min;Max	129.3;167.6	119.6;170.7
	Median [Q1;Q3]	152.7 [135.5;160.1]	147.1 [140.6;153.4]
Weight D1 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	150.2 ($\pm 14.2)$	146.2 ($\pm 13.0)$
	Min;Max	130.0;168.3	123.3;165.8
	Median [Q1;Q3]	152.8 [136.9;162.0]	147.2 [139.1;153.8]
Weight D2 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	145.2 ($\pm 13.9)$	147.4 (± 14.0)
	Min;Max	124.9;162.2	123.7;170.5
	Median [Q1;Q3]	148.4 [132.2;156.8]	148.0 [140.4;154.2]
Weight D3 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	$141.7(\pm 14.9)$	148.3 ($\pm 13.0)$
	Min;Max	121.6;162.4	125.2;167.0
	Median [Q1;Q3]	144.2 [127.2;153.5]	150.4 [141.1;155.7]
Weight D4 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	137.8 ($\pm 14.9)$	149.2 ($\pm 13.3)$
	Min;Max	117.9;159.5	125.5;167.2
	Median [Q1;Q3]	140.5 [123.3;148.8]	151.5 [142.1;157.1]
Weight D5 (g)			
	N	4	4
	NMiss	4	4
	Mean (SD)	137.1 ($\pm 12.6)$	145.2 (± 13.2)
	Min;Max	118.6;146.9	125.6;153.2
	Median [Q1;Q3]	141.5 [129.4;144.9]	151.1 [137.7;152.8]
Weight D6 (g)			
	N	4	4
	NMiss	4	4
	Mean (SD)	134.1 ($\pm 12.2)$	144.4 ($\pm 13.6)$
	Min;Max	116.3;143.3	124.2;152.8
	Median [Q1;Q3]	138.5 [126.5;141.8]	150.3 [136.4;152.5]
Weight D7 (g)			
	N	4	4
	NMiss	4	4
	Mean (SD)	132.2 ($\pm 12.4)$	143.6 ($\pm 12.3)$
	Min;Max	114.2;142.3	125.8;152.1
	Median [Q1;Q3]	136.1 [124.5;139.9]	148.3 [135.4;151.9]

Weight D1 (g)

		Sham	Naive
Weight D0 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	149.2 ($\pm 14.3)$	146.6 ($\pm 14.8)$
	Min;Max	129.3;167.6	119.6;170.7
	Median [Q1;Q3]	152.7 [135.5;160.1]	147.1 [140.6;153.4]
Weight D1 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	150.2 ($\pm 14.2)$	146.2 ($\pm 13.0)$
	Min;Max	130.0;168.3	123.3;165.8
	Median [Q1;Q3]	152.8 [136.9;162.0]	147.2 [139.1;153.8]
Weight D2 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	145.2 ($\pm 13.9)$	147.4 (± 14.0)
	Min;Max	124.9;162.2	123.7;170.5
	Median [Q1;Q3]	148.4 [132.2;156.8]	148.0 [140.4;154.2]
Weight D3 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	$141.7(\pm 14.9)$	148.3 ($\pm 13.0)$
	Min;Max	121.6;162.4	125.2;167.0
	Median [Q1;Q3]	144.2 [127.2;153.5]	150.4 [141.1;155.7]
Weight D4 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	137.8 ($\pm 14.9)$	149.2 ($\pm 13.3)$
	Min;Max	117.9;159.5	125.5;167.2
	Median [Q1;Q3]	140.5 [123.3;148.8]	151.5 [142.1;157.1]
Weight D5 (g)			
	N	4	4
	NMiss	4	4
	Mean (SD)	137.1 ($\pm 12.6)$	145.2 (± 13.2)
	Min;Max	118.6;146.9	125.6;153.2
	Median [Q1;Q3]	141.5 [129.4;144.9]	151.1 [137.7;152.8]
Weight D6 (g)			
	N	4	4
	NMiss	4	4
	Mean (SD)	134.1 ($\pm 12.2)$	144.4 ($\pm 13.6)$
	Min;Max	116.3;143.3	124.2;152.8
	Median [Q1;Q3]	138.5 [126.5;141.8]	150.3 [136.4;152.5]
Weight D7 (g)			
	N	4	4
	NMiss	4	4
	Mean (SD)	132.2 ($\pm 12.4)$	143.6 ($\pm 12.3)$
	Min;Max	114.2;142.3	125.8;152.1
	Median [Q1;Q3]	136.1 [124.5;139.9]	148.3 [135.4;151.9]

Weight D2 (g)

		Sham	Naive
Weight D0 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	149.2 ($\pm 14.3)$	146.6 ($\pm 14.8)$
	Min;Max	129.3;167.6	119.6;170.7
	Median [Q1;Q3]	152.7 [135.5;160.1]	147.1 [140.6;153.4]
Weight D1 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	150.2 ($\pm 14.2)$	146.2 ($\pm 13.0)$
	Min;Max	130.0;168.3	123.3;165.8
	Median [Q1;Q3]	152.8 [136.9;162.0]	147.2 [139.1;153.8]
Weight D2 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	145.2 ($\pm 13.9)$	147.4 (± 14.0)
	Min;Max	124.9;162.2	123.7;170.5
	Median [Q1;Q3]	148.4 [132.2;156.8]	148.0 [140.4;154.2]
Weight D3 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	$141.7(\pm 14.9)$	148.3 ($\pm 13.0)$
	Min;Max	121.6;162.4	125.2;167.0
	Median [Q1;Q3]	144.2 [127.2;153.5]	150.4 [141.1;155.7]
Weight D4 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	137.8 ($\pm 14.9)$	149.2 ($\pm 13.3)$
	Min;Max	117.9;159.5	125.5;167.2
	Median [Q1;Q3]	140.5 [123.3;148.8]	151.5 [142.1;157.1]
Weight D5 (g)			
	N	4	4
	NMiss	4	4
	Mean (SD)	137.1 ($\pm 12.6)$	145.2 (± 13.2)
	Min;Max	118.6;146.9	125.6;153.2
	Median [Q1;Q3]	141.5 [129.4;144.9]	151.1 [137.7;152.8]
Weight D6 (g)			
	N	4	4
	NMiss	4	4
	Mean (SD)	134.1 ($\pm 12.2)$	144.4 ($\pm 13.6)$
	Min;Max	116.3;143.3	124.2;152.8
	Median [Q1;Q3]	138.5 [126.5;141.8]	150.3 [136.4;152.5]
Weight D7 (g)			
	N	4	4
	NMiss	4	4
	Mean (SD)	132.2 ($\pm 12.4)$	143.6 ($\pm 12.3)$
	Min;Max	114.2;142.3	125.8;152.1
	Median [Q1;Q3]	136.1 [124.5;139.9]	148.3 [135.4;151.9]

Weight D3 (g)

		Sham	Naive
Weight D0 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	149.2 ($\pm 14.3)$	146.6 ($\pm 14.8)$
	Min;Max	129.3;167.6	119.6;170.7
	Median [Q1;Q3]	152.7 [135.5;160.1]	147.1 [140.6;153.4]
Weight D1 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	150.2 ($\pm 14.2)$	146.2 ($\pm 13.0)$
	Min;Max	130.0;168.3	123.3;165.8
	Median [Q1;Q3]	152.8 [136.9;162.0]	147.2 [139.1;153.8]
Weight D2 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	145.2 ($\pm 13.9)$	147.4 (± 14.0)
	Min;Max	124.9;162.2	123.7;170.5
	Median [Q1;Q3]	148.4 [132.2;156.8]	148.0 [140.4;154.2]
Weight D3 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	$141.7(\pm 14.9)$	148.3 ($\pm 13.0)$
	Min;Max	121.6;162.4	125.2;167.0
	Median [Q1;Q3]	144.2 [127.2;153.5]	150.4 [141.1;155.7]
Weight D4 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	137.8 ($\pm 14.9)$	149.2 ($\pm 13.3)$
	Min;Max	117.9;159.5	125.5;167.2
	Median [Q1;Q3]	140.5 [123.3;148.8]	151.5 [142.1;157.1]
Weight D5 (g)			
	N	4	4
	NMiss	4	4
	Mean (SD)	137.1 ($\pm 12.6)$	145.2 (± 13.2)
	Min;Max	118.6;146.9	125.6;153.2
	Median [Q1;Q3]	141.5 [129.4;144.9]	151.1 [137.7;152.8]
Weight D6 (g)			
	N	4	4
	NMiss	4	4
	Mean (SD)	134.1 ($\pm 12.2)$	144.4 ($\pm 13.6)$
	Min;Max	116.3;143.3	124.2;152.8
	Median [Q1;Q3]	138.5 [126.5;141.8]	150.3 [136.4;152.5]
Weight D7 (g)			
	N	4	4
	NMiss	4	4
	Mean (SD)	132.2 ($\pm 12.4)$	143.6 ($\pm 12.3)$
	Min;Max	114.2;142.3	125.8;152.1
	Median [Q1;Q3]	136.1 [124.5;139.9]	148.3 [135.4;151.9]

Weight D4 (g)

		Sham	Naive
Weight D0 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	149.2 ($\pm 14.3)$	146.6 ($\pm 14.8)$
	Min;Max	129.3;167.6	119.6;170.7
	Median [Q1;Q3]	152.7 [135.5;160.1]	147.1 [140.6;153.4]
Weight D1 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	150.2 ($\pm 14.2)$	146.2 ($\pm 13.0)$
	Min;Max	130.0;168.3	123.3;165.8
	Median [Q1;Q3]	152.8 [136.9;162.0]	147.2 [139.1;153.8]
Weight D2 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	145.2 ($\pm 13.9)$	147.4 (± 14.0)
	Min;Max	124.9;162.2	123.7;170.5
	Median [Q1;Q3]	148.4 [132.2;156.8]	148.0 [140.4;154.2]
Weight D3 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	$141.7(\pm 14.9)$	148.3 ($\pm 13.0)$
	Min;Max	121.6;162.4	125.2;167.0
	Median [Q1;Q3]	144.2 [127.2;153.5]	150.4 [141.1;155.7]
Weight D4 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	137.8 ($\pm 14.9)$	149.2 ($\pm 13.3)$
	Min;Max	117.9;159.5	125.5;167.2
	Median [Q1;Q3]	140.5 [123.3;148.8]	151.5 [142.1;157.1]
Weight D5 (g)			
	N	4	4
	NMiss	4	4
	Mean (SD)	137.1 ($\pm 12.6)$	145.2 (± 13.2)
	Min;Max	118.6;146.9	125.6;153.2
	Median [Q1;Q3]	141.5 [129.4;144.9]	151.1 [137.7;152.8]
Weight D6 (g)			
	N	4	4
	NMiss	4	4
	Mean (SD)	134.1 ($\pm 12.2)$	144.4 ($\pm 13.6)$
	Min;Max	116.3;143.3	124.2;152.8
	Median [Q1;Q3]	138.5 [126.5;141.8]	150.3 [136.4;152.5]
Weight D7 (g)			
	N	4	4
	NMiss	4	4
	Mean (SD)	132.2 ($\pm 12.4)$	143.6 ($\pm 12.3)$
	Min;Max	114.2;142.3	125.8;152.1
	Median [Q1;Q3]	136.1 [124.5;139.9]	148.3 [135.4;151.9]

Weight D5 (g)

		Sham	Naive
Weight D0 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	149.2 ($\pm 14.3)$	146.6 ($\pm 14.8)$
	Min;Max	129.3;167.6	119.6;170.7
	Median [Q1;Q3]	152.7 [135.5;160.1]	147.1 [140.6;153.4]
Weight D1 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	150.2 ($\pm 14.2)$	146.2 ($\pm 13.0)$
	Min;Max	130.0;168.3	123.3;165.8
	Median [Q1;Q3]	152.8 [136.9;162.0]	147.2 [139.1;153.8]
Weight D2 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	145.2 ($\pm 13.9)$	147.4 (± 14.0)
	Min;Max	124.9;162.2	123.7;170.5
	Median [Q1;Q3]	148.4 [132.2;156.8]	148.0 [140.4;154.2]
Weight D3 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	$141.7(\pm 14.9)$	148.3 ($\pm 13.0)$
	Min;Max	121.6;162.4	125.2;167.0
	Median [Q1;Q3]	144.2 [127.2;153.5]	150.4 [141.1;155.7]
Weight D4 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	137.8 ($\pm 14.9)$	149.2 ($\pm 13.3)$
	Min;Max	117.9;159.5	125.5;167.2
	Median [Q1;Q3]	140.5 [123.3;148.8]	151.5 [142.1;157.1]
Weight D5 (g)			
	N	4	4
	NMiss	4	4
	Mean (SD)	137.1 ($\pm 12.6)$	145.2 (± 13.2)
	Min;Max	118.6;146.9	125.6;153.2
	Median [Q1;Q3]	141.5 [129.4;144.9]	151.1 [137.7;152.8]
Weight D6 (g)			
	N	4	4
	NMiss	4	4
	Mean (SD)	134.1 ($\pm 12.2)$	144.4 ($\pm 13.6)$
	Min;Max	116.3;143.3	124.2;152.8
	Median [Q1;Q3]	138.5 [126.5;141.8]	150.3 [136.4;152.5]
Weight D7 (g)			
	N	4	4
	NMiss	4	4
	Mean (SD)	132.2 ($\pm 12.4)$	143.6 ($\pm 12.3)$
	Min;Max	114.2;142.3	125.8;152.1
	Median [Q1;Q3]	136.1 [124.5;139.9]	148.3 [135.4;151.9]

Weight D6 (g)

		Sham	Naive
Weight D0 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	149.2 ($\pm 14.3)$	146.6 ($\pm 14.8)$
	Min;Max	129.3;167.6	119.6;170.7
	Median [Q1;Q3]	152.7 [135.5;160.1]	147.1 [140.6;153.4]
Weight D1 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	150.2 ($\pm 14.2)$	146.2 ($\pm 13.0)$
	Min;Max	130.0;168.3	123.3;165.8
	Median [Q1;Q3]	152.8 [136.9;162.0]	147.2 [139.1;153.8]
Weight D2 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	145.2 ($\pm 13.9)$	147.4 (± 14.0)
	Min;Max	124.9;162.2	123.7;170.5
	Median [Q1;Q3]	148.4 [132.2;156.8]	148.0 [140.4;154.2]
Weight D3 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	$141.7(\pm 14.9)$	148.3 ($\pm 13.0)$
	Min;Max	121.6;162.4	125.2;167.0
	Median [Q1;Q3]	144.2 [127.2;153.5]	150.4 [141.1;155.7]
Weight D4 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	137.8 ($\pm 14.9)$	149.2 ($\pm 13.3)$
	Min;Max	117.9;159.5	125.5;167.2
	Median [Q1;Q3]	140.5 [123.3;148.8]	151.5 [142.1;157.1]
Weight D5 (g)			
	N	4	4
	NMiss	4	4
	Mean (SD)	137.1 ($\pm 12.6)$	145.2 (± 13.2)
	Min;Max	118.6;146.9	125.6;153.2
	Median [Q1;Q3]	141.5 [129.4;144.9]	151.1 [137.7;152.8]
Weight D6 (g)			
	N	4	4
	NMiss	4	4
	Mean (SD)	134.1 ($\pm 12.2)$	144.4 ($\pm 13.6)$
	Min;Max	116.3;143.3	124.2;152.8
	Median [Q1;Q3]	138.5 [126.5;141.8]	150.3 [136.4;152.5]
Weight D7 (g)			
	N	4	4
	NMiss	4	4
	Mean (SD)	132.2 ($\pm 12.4)$	143.6 ($\pm 12.3)$
	Min;Max	114.2;142.3	125.8;152.1
	Median [Q1;Q3]	136.1 [124.5;139.9]	148.3 [135.4;151.9]

Weight D7 (g)

		Sham	Naive
Weight D0 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	149.2 ($\pm 14.3)$	146.6 ($\pm 14.8)$
	Min;Max	129.3;167.6	119.6;170.7
	Median [Q1;Q3]	152.7 [135.5;160.1]	147.1 [140.6;153.4]
Weight D1 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	150.2 ($\pm 14.2)$	146.2 ($\pm 13.0)$
	Min;Max	130.0;168.3	123.3;165.8
	Median [Q1;Q3]	152.8 [136.9;162.0]	147.2 [139.1;153.8]
Weight D2 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	145.2 ($\pm 13.9)$	147.4 (± 14.0)
	Min;Max	124.9;162.2	123.7;170.5
	Median [Q1;Q3]	148.4 [132.2;156.8]	148.0 [140.4;154.2]
Weight D3 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	$141.7(\pm 14.9)$	148.3 ($\pm 13.0)$
	Min;Max	121.6;162.4	125.2;167.0
	Median [Q1;Q3]	144.2 [127.2;153.5]	150.4 [141.1;155.7]
Weight D4 (g)			
	N	8	8
	NMiss	0	0
	Mean (SD)	137.8 ($\pm 14.9)$	149.2 ($\pm 13.3)$
	Min;Max	117.9;159.5	125.5;167.2
	Median [Q1;Q3]	140.5 [123.3;148.8]	151.5 [142.1;157.1]
Weight D5 (g)			
	N	4	4
	NMiss	4	4
	Mean (SD)	137.1 ($\pm 12.6)$	145.2 (± 13.2)
	Min;Max	118.6;146.9	125.6;153.2
	Median [Q1;Q3]	141.5 [129.4;144.9]	151.1 [137.7;152.8]
Weight D6 (g)			
	N	4	4
	NMiss	4	4
	Mean (SD)	134.1 ($\pm 12.2)$	144.4 ($\pm 13.6)$
	Min;Max	116.3;143.3	124.2;152.8
	Median [Q1;Q3]	138.5 [126.5;141.8]	150.3 [136.4;152.5]
Weight D7 (g)			
	N	4	4
	NMiss	4	4
	Mean (SD)	132.2 ($\pm 12.4)$	143.6 ($\pm 12.3)$
	Min;Max	114.2;142.3	125.8;152.1
	Median [Q1;Q3]	136.1 [124.5;139.9]	148.3 [135.4;151.9]

Supplementary Table 5. Hamster challenge data (Control groups). Descriptive weight data analysis during 7 DPI observation

		1 Group			
		MRT5500 (0.15 $\mu \mathrm{g}$)	MRT5500 (1.5 $\mu \mathrm{g}$)	MRT5500 (4.5 $\mu \mathrm{g}$)	MRT5500 (13.5 mg)
\% Weight Loss (D1)					
	N	8	8	8	8
	NMiss	0	0	0	0
	Mean (SD)	-1.1 ($\pm 0.9)$	-2.0 (± 0.6)	$-1.4(\pm 0.4)$	$-1.4(\pm 0.5)$
	Min;Max	-2.1;0.8	-3.1;-1.1	-1.9;-0.9	-2.5;-0.9
	Median [Q1;Q3]	-1.2 [-1.6;-0.8]	-2.1 [-2.2;-1.7]	-1.5 [-1.7;-1.2]	-1.4 [-1.6;-1.0]
\% Weight Loss (D2)					
	N	8	8	8	8
	NMiss	0	0	0	0
	Mean (SD)	-3.4 ($\pm 1.0)$	-4.0 ($\pm 0.7)$	$-2.4(\pm 0.7)$	$-2.7(\pm 1.1)$
	Min;Max	-4.9;-1.6	$-5.1 ;-2.8$	$-3.3 ;-1.1$	-3.7;-0.4
	Median [Q1;Q3]	-3.4 [-4.2;-2.9]	-4.1 [-4.3;-3.6]	-2.2 [-3.2;-2.0]	-2.9 [-3.6;-2.1]
\% Weight Loss (D3)					
	N	8	8	8	8
	NMiss	0	0	0	0
	Mean (SD)	-8.0 ($\pm 1.5)$	-4.1 (± 1.1)	$-2.9(\pm 1.3)$	$-2.4(\pm 1.7)$
	Min;Max	-10.4;-5.5	-5.6;-2.1	-4.6;-1.1	-5.5;-0.7
	Median [Q1;Q3]	-7.7 [-9.0;-7.3]	-4.4 [-4.7;-3.5]	-2.9 [-4.0;-1.8]	-2.1 [-3.3;-0.9]
\% Weight Loss (D4)					
	N	8	8	8	8
	NMiss	0	0	0	0
	Mean (SD)	$-10.4(\pm 1.8)$	-3.3 (± 1.1)	-1.1($\pm 1.3)$	-1.5 ($\pm 1.6)$
	Min;Max	-13.3;-7.0	-4.7;-1.8	-3.0;1.0	-3.9;0.4
	Median [Q1;Q3]	-10.7 [-11.2;-9.7]	-3.3 [-4.4;-2.3]	-1.2 [-1.9;-0.2]	-1.5 [-2.7;-0.0]
\% Weight Loss (D5)					
	N	4	4	4	4
	NMiss	4	4	4	4
	Mean (SD)	$-13.5(\pm 1.0)$	-3.9 ($\pm 1.3)$	$-2.9(\pm 1.3)$	-1.9 ($\pm 1.9)$
	Min;Max	-15.1;-12.8	-5.2;-2.3	-4.4;-1.7	-3.0;0.9
	Median [Q1;Q3]	-13.1 [-14.1;-12.9]	-4.0 [-5.0;-2.8]	-2.9 [-4.0;-1.8]	-2.8 [-3.0;-0.8]
\% Weight Loss (D6)					
	N	4	4	4	4
	NMiss	4	4	4	4
	Mean (SD)	-15.9 ($\pm 0.9)$	-3.5 ($\pm 1.0)$	$-2.3(\pm 1.2)$	-1.2 ($\pm 2.0)$
	Min;Max	-16.8;-14.7	-4.8;-2.4	-3.2;-0.6	-2.8;1.8
	Median [Q1;Q3]	-16.0 [-16.4;-15.3]	-3.4 [-4.2;-2.8]	-2.7 [-3.0;-1.6]	-1.8 [-2.3;-0.0]
\% Weight Loss (D7)					
	N	4	4	4	3
	NMiss	4	4	4	5
	Mean (SD)	$-15.3(\pm 1.7)$	-3.8($\pm 1.1)$	$-2.5(\pm 0.9)$	$-1.0(\pm 1.7)$
	Min;Max	-17.6;-13.4	-4.9;-2.4	-3.7;-1.7	-2.4;0.8
	Median [Q1;Q3]	-15.2 [-16.5;-14.2]	-3.8 [-4.6;-2.9]	-2.4 [-3.3;-1.8]	-1.5 [-2.4;0.8]

Supplementary Table 6. Hamster challenge data (1 dose regimen). \% weight loss during 7 DPI observation

DPI observation

				2 Group	
		MRT5500 (0.15 $\mu \mathrm{g}$)	MRT5500 (1.5 $\mu \mathrm{g}$)	MRT5500 (4.5 $\mu \mathrm{g}$)	MRT5500 (13.5 $\mu \mathrm{g}$)
\% Weight Loss (D1)					
	N	8	8	8	8
	NMiss	0	0	0	0
	Mean (SD)	$0.1(\pm 2.1)$	-1.2 ($\pm 1.7)$	-0.5 ($\pm 1.1)$	-0.4 ($\pm 2.0)$
	Min;Max	-2.4;4.6	-4.1;1.6	-1.7;1.4	-4.6;1.7
	Median [Q1;Q3]	-0.1 [-1.0;0.5]	-1.3 [-2.1;-0.2]	-0.6 [-1.3;0.2]	-0.0 [-1.0;1.0]
\% Weight Loss (D2)					
	N	8	8	8	8
	NMiss	0	0	0	0
	Mean (SD)	-1.7 ($\pm 2.3)$	-2.0 ($\pm 2.7)$	-2.3 ($\pm 1.5)$	-2.5 ($\pm 2.9)$
	Min;Max	-4.5;2.5	-5.6;2.6	-4.3;0.2	-8.5;1.4
	Median [Q1;Q3]	-1.8 [-3.4;-0.5]	-1.7 [-4.2;-0.6]	-2.5 [-3.5;-1.2]	-2.1 [-3.6;-0.9]
\% Weight Loss (D3)					
	N	8	8	8	8
	NMiss	0	0	0	0
	Mean (SD)	$-2.4(\pm 2.3)$	-1.6 ($\pm 2.5)$	-1.9 ($\pm 1.6)$	-1.9 ($\pm 3.7)$
	Min;Max	-5.4;1.5	-4.3;3.1	-4.5;0.1	-9.4;2.8
	Median [Q1;Q3]	-2.3 [-4.3;-1.3]	-2.3 [-3.1;-0.5]	-1.8 [-3.2;-0.5]	-1.3 [-2.9;0.0]
\% Weight Loss (D4)					
	N	8	8	8	8
	NMiss	0	0	0	0
	Mean (SD)	-1.5 ($\pm 3.3)$	-0.3 (± 2.1)	-0.5 ($\pm 1.6)$	-1.0 ($\pm 3.3)$
	Min;Max	-6.2;2.2	-3.0;3.2	-3.3;1.2	-7.9;3.4
	Median [Q1;Q3]	-0.9 [-4.3;1.3]	-0.6 [-1.8;1.2]	-0.2 [-1.5;0.7]	-0.2 [-1.9;0.5]
\% Weight Loss (D5)					
	N	4	4	4	4
	NMiss	4	4	4	4
	Mean (SD)	-1.3 ($\pm 4.7)$	$0.8(\pm 3.2)$	$-0.1(\pm 1.8)$	$0.3(\pm 2.5)$
	Min;Max	-7.6;3.0	-2.0;5.5	-2.0;2.4	-3.1;2.1
	Median [Q1;Q3]	-0.2 [-4.8;2.2]	-0.1 [-1.1;2.7]	-0.3 [-1.2;1.1]	1.1 [-1.5;2.1]
\% Weight Loss (D6)					
	N	4	4	4	4
	NMiss	4	4	4	4
	Mean (SD)	$-2.1(\pm 6.4)$	$0.7(\pm 3.8)$	-0.6 ($\pm 2.4)$	-0.1 ($\pm 3.4)$
	Min;Max	-11.4;2.9	-3.3;5.8	-2.7;2.8	-3.8;4.4
	Median [Q1;Q3]	-0.0 [-6.3;2.0]	0.1 [-2.0;3.3]	-1.2 [-2.4;1.2]	-0.4 [-2.4;2.2]
\% Weight Loss (D7)					
	N	4	4	4	4
	NMiss	4	4	4	4
	Mean (SD)	-2.7 ($\pm 5.0)$	$0.8(\pm 4.2)$	-1.1 ($\pm 2.5)$	$0.6(\pm 3.9)$
	Min;Max	-9.4;2.2	-3.9;5.8	-3.1;2.6	-2.9;6.1
	Median [Q1;Q3]	-1.9 [-6.3;0.9]	0.7 [-2.5;4.2]	-1.9 [-2.7;0.6]	-0.4 [-1.8;3.0]

\% Weight Loss (D2)
\% Weight Loss (D3)
\% Weight Loss (D4)

		Sham	Naive
\% Weight Loss (D1)			
	N	8	8
	NMiss	0	0
	Mean (SD)	$0.7(\pm 2.1)$	-0.1 (± 1.7)
	Min;Max	-1.5;5.3	-2.9;3.1
	Median [Q1;Q3]	0.5 [-0.6;1.0]	0.1 [-1.1;0.3]
\% Weight Loss (D2)			
	N	8	8
	NMiss	0	0
	Mean (SD)	-2.6 ($\pm 2.2)$	$0.7(\pm 1.5)$
	Min;Max	-5.1;2.3	-1.6;3.4
	Median [Q1;Q3]	-3.1 [-3.7;-2.5]	0.5 [-0.1;1.3]
\% Weight Loss (D3)			
	N	8	8
	NMiss	0	0
	Mean (SD)	$-5.1(\pm 2.4)$	$1.7(\pm 10.1)$
	Min;Max	-7.4;-0.2	-11.5;13.8
	Median [Q1;Q3]	-6.0 [-6.5;-4.0]	2.7 [-7.6;10.7]
\% Weight Loss (D4)			
	N	8	8
	NMiss	0	0
	Mean (SD)	$-7.7(\pm 2.4)$	2.4 (± 10.1)
	Min;Max	-10.4;-3.5	-10.8;14.1
	Median [Q1;Q3]	-8.9 [-9.1;-5.8]	2.7 [-6.8;11.9]
\% Weight Loss (D5)			
	N	4	4
	NMiss	4	4
	Mean (SD)	-9.0 ($\pm 1.9)$	$4.4(\pm 0.8)$
	Min;Max	-10.6;-7.2	3.3;5.0
	Median [Q1;Q3]	-9.0 [-10.6;-7.3]	4.7 [3.9;5.0]
\% Weight Loss (D6)			
	N	4	4
	NMiss	4	4
	Mean (SD)	$-10.9(\pm 1.9)$	$3.8(\pm 0.4)$
	Min;Max	-12.8;-8.9	3.2;4.2
	Median [Q1;Q3]	-11.0 [-12.5;-9.3]	4.0 [3.5;4.1]
\% Weight Loss (D7)			
	N	4	4
	NMiss	4	4
	Mean (SD)	-12.2 (± 2.1)	$3.3(\pm 1.5)$
	Min;Max	-13.9;-9.2	1.5;5.2
	Median [Q1;Q3]	-12.9 [-13.6;-10.8]	3.3 [2.2;4.4]

\% Weight Loss (D5)

		Sham	Naive
\% Weight Loss (D1)			
	N	8	8
	NMiss	0	0
	Mean (SD)	$0.7(\pm 2.1)$	-0.1 (± 1.7)
	Min;Max	-1.5;5.3	-2.9;3.1
	Median [Q1;Q3]	0.5 [-0.6;1.0]	0.1 [-1.1;0.3]
\% Weight Loss (D2)			
	N	8	8
	NMiss	0	0
	Mean (SD)	-2.6 (± 2.2)	$0.7(\pm 1.5)$
	Min;Max	-5.1;2.3	-1.6;3.4
	Median [Q1;Q3]	-3.1 [-3.7;-2.5]	0.5 [-0.1;1.3]
\% Weight Loss (D3)			
	N	8	8
	NMiss	0	0
	Mean (SD)	$-5.1(\pm 2.4)$	$1.7(\pm 10.1)$
	Min;Max	-7.4;-0.2	-11.5;13.8
	Median [Q1;Q3]	-6.0 [-6.5;-4.0]	2.7 [-7.6;10.7]
\% Weight Loss (D4)			
	N	8	8
	NMiss	0	0
	Mean (SD)	-7.7 (± 2.4)	2.4 (± 10.1)
	Min;Max	-10.4;-3.5	-10.8;14.1
	Median [Q1;Q3]	-8.9 [-9.1;-5.8]	2.7 [-6.8;11.9]
\% Weight Loss (D5)			
	N	4	4
	NMiss	4	4
	Mean (SD)	-9.0 ($\pm 1.9)$	$4.4(\pm 0.8)$
	Min;Max	-10.6;-7.2	3.3;5.0
	Median [Q1;Q3]	-9.0 [-10.6;-7.3]	4.7 [3.9;5.0]
\% Weight Loss (D6)			
	N	4	4
	NMiss	4	4
	Mean (SD)	$-10.9(\pm 1.9)$	$3.8(\pm 0.4)$
	Min;Max	-12.8;-8.9	3.2;4.2
	Median [Q1;Q3]	-11.0 [-12.5;-9.3]	4.0 [3.5;4.1]
\% Weight Loss (D7)			
	N	4	4
	NMiss	4	4
	Mean (SD)	-12.2 (± 2.1)	$3.3(\pm 1.5)$
	Min;Max	-13.9;-9.2	1.5;5.2
	Median [Q1;Q3]	-12.9 [-13.6;-10.8]	3.3 [2.2;4.4]

\% Weight Loss (D6)

		Sham	Naive
\% Weight Loss (D1)			
	N	8	8
	NMiss	0	0
	Mean (SD)	$0.7(\pm 2.1)$	-0.1 (± 1.7)
	Min;Max	-1.5;5.3	-2.9;3.1
	Median [Q1;Q3]	0.5 [-0.6;1.0]	0.1 [-1.1;0.3]
\% Weight Loss (D2)			
	N	8	8
	NMiss	0	0
	Mean (SD)	-2.6 (± 2.2)	$0.7(\pm 1.5)$
	Min;Max	-5.1;2.3	-1.6;3.4
	Median [Q1;Q3]	-3.1 [-3.7;-2.5]	0.5 [-0.1;1.3]
\% Weight Loss (D3)			
	N	8	8
	NMiss	0	0
	Mean (SD)	$-5.1(\pm 2.4)$	$1.7(\pm 10.1)$
	Min;Max	-7.4;-0.2	-11.5;13.8
	Median [Q1;Q3]	-6.0 [-6.5;-4.0]	2.7 [-7.6;10.7]
\% Weight Loss (D4)			
	N	8	8
	NMiss	0	0
	Mean (SD)	-7.7 (± 2.4)	2.4 (± 10.1)
	Min;Max	-10.4;-3.5	-10.8;14.1
	Median [Q1;Q3]	-8.9 [-9.1;-5.8]	2.7 [-6.8;11.9]
\% Weight Loss (D5)			
	N	4	4
	NMiss	4	4
	Mean (SD)	-9.0 ($\pm 1.9)$	$4.4(\pm 0.8)$
	Min;Max	-10.6;-7.2	3.3;5.0
	Median [Q1;Q3]	-9.0 [-10.6;-7.3]	4.7 [3.9;5.0]
\% Weight Loss (D6)			
	N	4	4
	NMiss	4	4
	Mean (SD)	$-10.9(\pm 1.9)$	$3.8(\pm 0.4)$
	Min;Max	-12.8;-8.9	3.2;4.2
	Median [Q1;Q3]	-11.0 [-12.5;-9.3]	4.0 [3.5;4.1]
\% Weight Loss (D7)			
	N	4	4
	NMiss	4	4
	Mean (SD)	-12.2 (± 2.1)	$3.3(\pm 1.5)$
	Min;Max	-13.9;-9.2	1.5;5.2
	Median [Q1;Q3]	-12.9 [-13.6;-10.8]	3.3 [2.2;4.4]

\% Weight Loss (D7)

		Sham	Naive
\% Weight Loss (D1)			
	N	8	8
	NMiss	0	0
	Mean (SD)	$0.7(\pm 2.1)$	-0.1 (± 1.7)
	Min;Max	-1.5;5.3	-2.9;3.1
	Median [Q1;Q3]	0.5 [-0.6;1.0]	0.1 [-1.1;0.3]
\% Weight Loss (D2)			
	N	8	8
	NMiss	0	0
	Mean (SD)	-2.6 (± 2.2)	$0.7(\pm 1.5)$
	Min;Max	-5.1;2.3	-1.6;3.4
	Median [Q1;Q3]	-3.1 [-3.7;-2.5]	0.5 [-0.1;1.3]
\% Weight Loss (D3)			
	N	8	8
	NMiss	0	0
	Mean (SD)	$-5.1(\pm 2.4)$	$1.7(\pm 10.1)$
	Min;Max	-7.4;-0.2	-11.5;13.8
	Median [Q1;Q3]	-6.0 [-6.5;-4.0]	2.7 [-7.6;10.7]
\% Weight Loss (D4)			
	N	8	8
	NMiss	0	0
	Mean (SD)	-7.7 (± 2.4)	2.4 (± 10.1)
	Min;Max	-10.4;-3.5	-10.8;14.1
	Median [Q1;Q3]	-8.9 [-9.1;-5.8]	2.7 [-6.8;11.9]
\% Weight Loss (D5)			
	N	4	4
	NMiss	4	4
	Mean (SD)	-9.0 ($\pm 1.9)$	$4.4(\pm 0.8)$
	Min;Max	-10.6;-7.2	3.3;5.0
	Median [Q1;Q3]	-9.0 [-10.6;-7.3]	4.7 [3.9;5.0]
\% Weight Loss (D6)			
	N	4	4
	NMiss	4	4
	Mean (SD)	$-10.9(\pm 1.9)$	$3.8(\pm 0.4)$
	Min;Max	-12.8;-8.9	3.2;4.2
	Median [Q1;Q3]	-11.0 [-12.5;-9.3]	4.0 [3.5;4.1]
\% Weight Loss (D7)			
	N	4	4
	NMiss	4	4
	Mean (SD)	-12.2 (± 2.1)	$3.3(\pm 1.5)$
	Min;Max	-13.9;-9.2	1.5;5.2
	Median [Q1;Q3]	-12.9 [-13.6;-10.8]	3.3 [2.2;4.4]

DPI observation

Supplementary Table 8. Hamster challenge data (Control groups). \% weight loss during 7

Supplementary Table 9. Pairwise comparisons of PsVNa titers on D35 in NHPs (5 $\mu \mathrm{g}$ dose, see also Fig.2)

Group pairs	p-value (Wilcoxon Exact Rank Test)
2P/GSAS vs 2P	$0.3143^{* *}$
2P/GSAS vs GSAS	0.4857
2P/GSAS vs 2P/GSAS/ALAYT	0.4857
2P/GSAS vs 6P	0.0286
2P/GSAS vs 6P/GSAS	0.1143
2P/GSAS vs Convalescent Sera	0.0105^{*}

* For comparison versus Convalescent Sera, Wilcoxon Rank Test was used (not the exact test)
** Two animals out of four in 2P group demonstrated PsVNa titers below lower limit of detection (see Fig.2)

Supplementary Table 10. sgmRNA copies in lungs and nares of MRT5500 vaccinated hamsters as compared to Sham (diluent) group (4 and 7 DPI)

Dose number	1 dose				2 doses			
	0.15 \%g	$1.5 \mu \mathrm{~g}$	$4.5 \mu \mathrm{~g}$	$\overline{13.5}$ Mg	0.15 Mg	$1.5 \mu \mathrm{~g}$	$4.5 \mu \mathrm{~g}$	13.5 нg
sgRNA copies in Lungs	$\begin{aligned} & >\text { Sham } \\ & p=0.0286 \\ & \hline \end{aligned}$	$\begin{aligned} & >\text { Sham } \\ & p=0.4857 \end{aligned}$	$\begin{aligned} & =\text { Sham } \\ & \mathrm{p}=1 \end{aligned}$	$\begin{aligned} & \text { < Sham } \\ & p=0.0286 \end{aligned}$	$\begin{aligned} & <\text { Sham } \\ & \mathrm{p}=0.0571 \\ & \hline \end{aligned}$	$\begin{aligned} & <\text { Sham } \\ & \mathrm{p}=0.0286 \\ & \hline \end{aligned}$	$\begin{aligned} & <\text { Sham } \\ & \mathrm{p}=0.0286 \end{aligned}$	$\begin{aligned} & \text { < Sham } \\ & \mathrm{p}=0.0286 \\ & \hline \end{aligned}$
sgRNA copies in Nares	$\begin{aligned} & >\text { Sham } \\ & p=0.0571 \end{aligned}$	$\begin{aligned} & <\text { Sham } \\ & \mathrm{p}=0.8857 \end{aligned}$	$\begin{aligned} & >\text { Sham - } \\ & \mathrm{p}=0.1143 \end{aligned}$	$\begin{aligned} & =\text { Sham } \\ & \mathrm{p}=1 \end{aligned}$	$\begin{aligned} & <\text { Sham } \\ & \mathrm{p}=0.8857 \end{aligned}$	$\begin{aligned} & <\text { Sham } \\ & \mathrm{p}=0.4 \end{aligned}$	$\begin{aligned} & <\text { Sham } \\ & \mathrm{p}=0.4857 \end{aligned}$	$\begin{aligned} & \text { < Sham } \\ & \mathrm{p}=0.5429 \end{aligned}$

7 DPI

Dose number	1 dose				2 doses			
	$0.15 \mu \mathrm{~g}$	$1.5 \mu \mathrm{~g}$	$4.5 \mu \mathrm{~g}$	13.5 Mg	$0.15 \mu \mathrm{~g}$	$1.5 \mu \mathrm{~g}$	$4.5 \mu \mathrm{~g}$	13.5 \%
sgRNA copies in Lungs	$\begin{aligned} & >\text { Sham } \\ & p=0.1429 \end{aligned}$	$\begin{aligned} & <\text { Sham } \\ & p=0.1429 \\ & \hline \end{aligned}$	$\begin{aligned} & <\text { Sham - } \\ & p=0.1429 \end{aligned}$	$\begin{aligned} & <\text { Sham } \\ & \mathrm{p}=0.1429 \end{aligned}$	$\begin{aligned} & <\text { Sham } \\ & p=0.2571 \end{aligned}$	$\begin{aligned} & <\text { Sham } \\ & p=0.1429 \end{aligned}$	$\begin{aligned} & <\text { Sham } \\ & \mathrm{p}=0.1429 \end{aligned}$	$\begin{aligned} & <\text { Sham } \\ & p=0.1429 \end{aligned}$
sgRNA copies in Nares	$\begin{aligned} & \text { < Sham } \\ & p=0.8857 \end{aligned}$	$\begin{aligned} & <\text { Sham - } \\ & \mathrm{p}=0.1143 \end{aligned}$	$\begin{aligned} & <\text { Sham - } \\ & \mathrm{p}=0.0571 \end{aligned}$	$\begin{aligned} & <\text { Sham } \\ & \mathrm{p}=0.0286 \end{aligned}$	$\begin{aligned} & <\text { Sham } \\ & \mathrm{p}=0.0286 \end{aligned}$	$\begin{aligned} & <\text { Sham } \\ & \mathrm{p}=0.3143 \end{aligned}$	$\begin{aligned} & <\text { Sham } \\ & p=0.6 \end{aligned}$	$\begin{aligned} & <\text { Sham } \\ & \mathrm{p}=0.0286 \end{aligned}$

- Tables represent the results of Wilcoxon Exact Test comparisons against Sham regarding sgRNA copies in Lung and Nares.
- "=" (equal), <' (less then) or '>' (more then) signs represent the directions of the difference as compared to Sham group
- DPI - days post infection (challenge) with SARS-CoV-2

Supplementary Table 11: List of acronyms

mRNA	messenger RNA
LNP	Lipid Nanoparticles
MRT5500	mRNA/LNP vaccine formulation
COVID-19	Coronavirus disease 2019
2019-nCoV	The 2019-novel coronavirus
SARS	Severe Acute Respiratory Syndrome
MERS-CoV	Coronavirus causing Middle East Respiratory Syndrome
HCoV-HKU1	Human coronavirus HKU1
SARS-CoV-2	Severe Acute Respiratory Syndrome Coronavirus 2, virus causing COVID-19
S-protein or S	Structural Spike glycoprotein of SARS-CoV-2
S-GCN4 protein	Recombinant S-protein containing a fusion of S-ectodomain with artificial trimerization domain GCN4 (custom made in GeneArt)
E-, M-, N-proteins	Proteins E, M, N of SARS-CoV-2
S1, S2	S1 and S2 subunits of S-protein
RBD	Receptor Binding Domain of S-protein
ACE2	Angiotensin-Converting Enzyme 2, cellular receptor of SARS CoV-1, 2
WT S-protein	Wild Type full length S-protein of SARS-CoV-2

232	ER	Endoplasmic Reticulum
233	KDEL	Molecular marker of ER
234	ERGIC	Endoplasmic Reticulum-Golgi Intermediate Compartment
235	KLHYT	Intracellular ER retention signal of S—proteins of SARS-CoV-1, 2
236	BALB/c	Albino Laboratory-Bred/c strain of mice
237	ELISA	Enzyme-Linked Immunosorbent Assay
238	MN	Microneutralization
239	IgG	Immunoglobulin G
240	Ig A	Immunoglobulin A
241	GMT	Geometric Mean Titers
242	GFP	Green Fluorescence Protein
243	RVP	GFP Reporter pseudoViral Particles
244	PsVNa	Pseudoviral neutralization assay
245	ID_{50}	Serum dilution providing 50% inhibition of RVP or WT SASR-CoV-2 entry
247	NHP	Non-Human Primate
248	PsV	Pseudovirus, pseudoviral
249	VAERD	Vaccine Associated Enhanced Respiratory Disease
250	RSV	Respiratory Syncytial Virus
251	RSV F protein	Major structural protein F of RSV
252	$\mathrm{T}_{\mathrm{H}} 1, \mathrm{~T}_{\mathrm{H}} 2$	T-helper cells type 1 and 2
253	IFN- γ	Interferon gamma
254	IL-13	Interleukin 13
255	IL-5	Interleukin 5
256	rhIL-2	recombinant human Interleukin 2 (IL-2)
257	PBMC	Peripheral Blood Mononuclear Cell
258	ELISPOT	Enzyme-Linked Immune Absorbent Spot assay
259	RPMI 1640	The growth medium used in cell culture

260	Cap 1	Specially altered nucleotide on the 5^{\prime} end of some primary transcripts such as precursor messenger RNA
261		A stretch of multiple adenosine monophosphates at 3^{\prime} ' end of some primary transcripts such as precursor messenger RNA
262	Poly(A) tail	Phosphate Buffer
263		Nonionic surfactant used for permeabilization of HeLa cells
265	Triton X-100	Institutional Animal Care and Use Committee
266	IACUC	Day
267	D	Intramuscular
268	IM	50\% Tissue Culture Infectious Dose
269	TCID 5_{50}	OD of 50\% neutralization point - intercept)/slope
270	MN ID ${ }_{50}$ Titer	Concanavalin A
271	CovA	Optical Density
272	OD	Contact Laboratory Services
273	CTL	Spot Forming Cells
274	SFC	h
275	h	Microgram
276	μg	Nanogram
277	ng	Microliter
278	μl	Milliliter
279	$m L$	

