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COVID-19 is caused by SARS-CoV-2." As of July 16th, 2020, there
were 13,579,581 diagnosed cases and 584,782 deaths attributed
to COVID-19 reported globally (https://coronavirus.jhu.edu/map.
html).? Unfortunately, there is still no effective drug or vaccine for
treating this disease. To accelerate drug development, there is an
urgent need to identify critical molecular targets and the role they
play in infection. Herein, we reported that Orfob localizes on
the membrane of mitochondria and suppresses type | interferon
(IFN-1) responses through association with TOM70, and TOM70
overexpression could largely rescue this inhibition. Our results
suggest the potential of targeting Orf9b-TOM70 interaction as a
novel therapeutic strategy of COVID-19.

Induction of IFN-l is a central event of the immune defense
against viral infection® Upon exposure to RNA viruses, an
intracellular antiviral response is initiated by activation of RIG-I like
receptors. In particular, when RIG-I/MDA5 detects viral RNA, they
trigger a signaling complex on the mitochondrial outer membrane,
including the adapter proteins MAVS/TRAF3/TRAF6/TOM70, which
ultimately leads to IFN-f production and induction of a host antiviral
state.*> Recent studies have shown that the most prominent feature
of SARS-CoV-2, in terms of immune responses as compared to that
of other viruses such as influenza A, is that it triggers a very low level
of IFN-1%7 In addition, it has also been found that the chemical,
Liquiritin, can inhibit SARS-CoV-2 by mimicking IFN-.2 Thus, under-
standing how SARS-CoV-2 suppresses IFN-I responses may be a
particularly promising approach to devise therapeutic strategies to
counteract SARS-CoV-2 infections.

Previous studies have shown that SARS-CoV Orfob, an
alternative open reading frame within the nucleocapsid (N) gene,
can significantly inhibit IFN-I production as a result of targeting
mitochondria.® In addition, antibodies against Orf9b were present
in the sera of convalescent SARS-CoV.'® or SARS-CoV-2 patients.'
Therefore, we speculate that SARS-CoV-2 Orf9b may play a critical
role in coronavirus-host interactions, particularly via an effect on
IFN-I production.

To explore the role of Orf9b in host-pathogen interaction, we
employed a biotin-streptavidin affinity purification mass spectro-
metry approach to identify the human proteins that physically
interact with Orf9b (Supplementary Fig. 1a). We found that
TOM70 scored the highest among all of the identified interactions
(Supplementary Table 1). To validate this interaction, we performed
co-immunoprecipitation (co-IP) and found that HA-TOM70 co-
precipitated with Orfob (Fig. 1a) and Orf9b could be pulled down

with biotinylated TOM70 (Supplementary Fig. 1b). To quantify the
binding strength of this interaction, we performed Biolayer
Interferometry (BLI) and found that the Ky is indeed relatively
low (44.9 nM) (Fig. 1b).

Considering the high homology of Orf9b in SARS-like corona-
viruses (Fig. 1c), we also tested whether SARS-CoV Orfob interacts
with TOM70. Interestingly, we found that SARS-CoV Orfob exhibits
a similar binding strength as SARS-CoV-2 Orf9b, indicating that the
interaction may be conserved across the SARS-like coronavirus
family (Supplementary Fig. 1c). To further pinpoint the region of
TOM70 that is required for the interaction with Orf9b, TOM70 was
divided into individual domains according to the known functions
of the regions'? (Fig. 1d). We found that only the construct
consisting of residues 235-608 (TOM70,35.60g) that contained both
the core and C-terminal domains precipitated with biotinylated
Orfob, and this interaction was comparable with that of the full-
length TOM70 (Fig. 1e, Supplementary Fig. 1d). This suggests that
the core and C-terminal domains of TOM70 are essential for this
interaction, while the transmembrane and clamp domains are not
required.

Since TOM70 is located in the outer membrane of mitochondria,
we hypothesized that SARS-CoV-2 Orf9b may also localize to the
outer membrane of mitochondria through interaction with
TOM70. Indeed, immunostaining of Orfb-Flag expressing HEK
293T cells revealed that both SARS-CoV and SARS-CoV-2 Orf9b
localize to the membrane of mitochondria (Supplementary Fig. 2a)
and colocalize with TOM70 (Fig. 1f). Further, we expressed
TOM70p1m, @ construct without the N-terminal transmembrane
domain of TOM70, to investigate whether it would change the
mitochondria localization of Orf9b. Despite the presence of
endogenous TOM70 in the cells, TOM70,7 overexpression indeed
partially disrupted the association of SARS-CoV or SARS-CoV-2
Orf9b with mitochondria (Fig. 1g, Supplementary Fig. 2b).

Considering the critical role of mitochondria and TOM70 in IFN-|
responses,” we next investigated whether Orf9b impacted antiviral
IFN-I signaling. We monitored human interferon-$ (IFN-B) promoter
activity in the presence or absence of SARS-CoV-2 Orfob using a dual
luciferase reporter assay. We observed that Orf9b significantly
reduced the activation of IFN-3 as compared to that of the vehicle
controls. The vehicle controls were prepared by co-transfecting with
poly(l:C) (Fig. Th) or MAVS overexpression (Fig. Ti). Next, we
examined whether overexpression of TOM70 can counteract the
Orf9b-mediated inhibition of IFN-I responses. We observed that
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Fig. 1 SARS-CoV-2 Orf9b suppresses type | interferon responses by targeting TOM70. a Co-immunoprecipitation of Orf9b-Flag with HA-
TOM70 from HEK 293T cells. Immunoprecipitation (IP) was performed using anti-Flag magnetic beads. b BLI data for the binding of Orf9b to
TOM70 and their interaction kinetics. Biotinylated Orf9b was immobilized on streptavidin-coated biosensors and exposed to TOM70 in SD
buffer (1x PBS, pH 7.4 with 0.02% Tween-20 and 0.1% BSA). Binding was measured by coincident changes in the interference pattern.
c Alignment of Orfob from SARS-like coronaviruses. Sequences were compiled from the National Center for Biotechnology Information server
and aligned by means of ClustalW. d Schematic drawing of truncated TOM70 used in domain mapping studies. e Streptavidin pull down assay
was performed by biotinylated Orfob or BSA incubated with truncated GST-TOM70-His in vitro. f Confocal microscopy of HEK 293T cells
transfected by SARS-CoV or SARS-CoV-2 Orfob-Flag, which were stained with an anti-flag antibody (green) and an anti-TOM70 antibody (red).
The nuclei were stained using DAPI (blue). Scale bar, 10 pm. g. Confocal microscopy of HEK 293T cells transfected by SARS-CoV-2 Orf9b-Flag
and HA-TOM70,1y, which were stained with the anti-flag antibody (green) and an anti-HA antibody (magenta). The mitochondria were
stained with MitoTracker” Orange CMTMRos (Red) and the nuclei were stained in blue using DAPI. Scale bar, 10 pm. h-j, IFN-p reporter gene
assays using HEK 293T cells expressing Flag or Orf9b-Flag in the presence or absence of HA-TOM70 and induced by transfection of poly(l:C)
(h, j) or MAVS overexpression (i). Luciferase activity is shown as fold induction. Data are representative of three replicates (mean and s.e.m. of
n =3 samples), *P <0.05 and ***P < 0.01 (two-tailed unpaired t-test). E, HEK 293T cells expressing Flag only
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TOM70 overexpression alone could not significantly enhance the
expression of IFN-B induced by poly(l:C) (Supplementary Fig. 2c).
However, TOM70 overexpression could largely rescue IFN-B expres-
sion from Orf9b-mediated inhibition (Fig. 1j). In addition, we also
attempted to knockdown TOM70 to further examine the effect of
Orf9b on IFN-I through TOM70. However, we did not observe
any obvious suppression of IFN-I production upon the addition of
TOM70 siRNA (data not shown). We note though an inhibition of
IFN-I production by TOM70 siRNA was demonstrated by another
study.” While we speculate that these differences may be owing to
the differences in the degree of knockdown, further examination is
needed to resolve this discrepancy.

Our results thus demonstrate that SARS-CoV-2 Orf9b localizes
on mitochondria and suppresses IFN-I responses through associa-
tion with TOM70. Previous studies have shown that SARS-CoV
Orfob could trigger autophagy in addition to the inhibition of IFN-I
responses,” and interestingly, autophagy is also observed upon
TOM70 knockdown.'® Consistent with our observation, Gordon et.
al."* have recently reported that SARS-CoV-2 Orfob interacts with
TOM70, although the functional consequences of this association
were not examined. In addition, there is also a preprint article that
indicates that SARS-CoV-2 Orf9b, Orf3, Orf6, Orf7a, and Orf7b can
suppress IFN-I responses to different extents.'”

There are two possible explanations how Orf9b inhibits IFN-I
responses through interacting with TOM70. First, because HSP90
physically interacts with TOM70 and plays a critical role in
the response of TOM70-mediated IFN-I activation,> Orf9b may
compete with HSP90 for binding to TOM70. Second, TOM70 may
be essential for mitochondrial energy metabolism." In parti-
cular, patients with abnormal TOM70 function suffer from lactic
acidosis.'® By interacting with TOM70, Orf9b may induce the
production of lactic acid, which has been proven to inhibit IFN-I
responses.'’

Considering the critical role of IFN-I in the human antiviral
response, restoration of IFN-I production in COVID-19 patients may
prove to be a significantly effective therapeutic option. Our results
highlight the potential by developing therapeutic agents, which
could inhibit the interaction between Orf9b and TOM70 in COVID-
19 patients. Further, since SARS-CoV Orf9b is highly homologous
to SARS-CoV-2 Orfob and also binds to TOM70 with high affinity,
the same strategy may also be applied to SARS infections.

DATA AVAILABILITY
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