Skip to main content
Log in

Surface and internal waves: The two-dimensional problem on forward motion of a body intersecting the interface between two fluids

  • Control Theory
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

A linear two-dimensional boundary value problem, that describes steady-state surface and internal waves due to the forward motion of a body in a fluid consisting of two superposed layers with different densities, is considered. The body is fully submerged and intersects the interface between the two layers. Two well-posed formulations of the problem are proposed in which, along with the Laplace equation, boundary conditions, coupling conditions on the interface, and conditions at infinity, a pair of supplementary conditions are imposed at the points where the body contour intersects the interface. In one of the well-posed formulations (where the differences between the horizontal momentum components are given at the intersection points), the existence of the unique solution is proved for all values of the parameters except for a certain (possibly empty) nowhere dense set of values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lamb, H., Hydrodynamics, Cambridge: Cambridge University Press, 1932.

    MATH  Google Scholar 

  2. Peters, A.S. and Stoker, J.J., The motion of a ship, as a floating rigid body, in a seaway, Comm. Pure Appl. Math., 1957, vol. 10, pp. 399–490.

    Article  MathSciNet  MATH  Google Scholar 

  3. Stoker, J.J., Water Waves. The Mathematical Theory with Applications, New York: Intersci. Publ., 1957.

    MATH  Google Scholar 

  4. Wehausen, J.V. and Laitone, E.V., Surface waves, Handbuch der Physik, Berlin: Springer, 1960, vol. 9, pp. 446–778.

    Google Scholar 

  5. Kostyukov, A.A., Teoriya korabel’nykh voln i volnovogo soprotivleniya (Theory of Ship Waves and Wave Resistance), Leningrad: Sudpromgiz, 1959.

    Google Scholar 

  6. Sretenskii, L.N., Teoriya volnovykh dvizhenii zhidkosti (Theory of Wave Motions of Fluid), Moscow: Nauka, 1977.

    Google Scholar 

  7. Newman, J.N., Marine Hydrodynamics, Cambridge: MIT Press, 1977.

    Google Scholar 

  8. Newman, J.N., The theory of ship motions, Adv. Appl. Mech., 1978, vol. 18, pp. 221–283.

    Article  MathSciNet  Google Scholar 

  9. Veden’kov, V.E., Smirnov, G.V., and Borisov, T.N., Dinamika poverkhnostnykh i vnutrennikh korabel’nykh voln (Dynamics of Surface and Internal Ship Waves), Vladivostok: Dal’nauka, 1999.

    Google Scholar 

  10. Vasil’eva, V.V. and Shkadova, S.V., Vnutrennie volny (Internal Waves), St. Petersburg: SPbGMTU, 2001.

    Google Scholar 

  11. Kuznetsov, N., Maz’ya, V., and Vainberg, B., Linear Water Waves: A Mathematical Approach, Cambridge: Cambridge University Press, 2002.

    Book  MATH  Google Scholar 

  12. Pagani, C.D. and Pierotti, D., Exact solution of the wave-resistance problem for a submerged cylinder. II. The nonlinear problem, Arch. Ration. Mech. Anal., 1999, vol. 49, pp. 289–327.

    Article  MathSciNet  MATH  Google Scholar 

  13. Pagani, C.D. and Pierotti, D., On solvability of the nonlinear wave-resistance problem for a surfacepiercing symmetric cylinder, SIAM J. Math. Anal., 2000, vol. 32, pp. 214–233.

    Article  MathSciNet  MATH  Google Scholar 

  14. Pagani, C.D. and Pierotti, D., The forward motion of an unsymmetric surface-piercing cylinder: the solvability of nonlinear problem in the supercritical case, Quart. J. Mech. Appl. Math., 2001, vol. 54, pp. 1–22.

    Article  MathSciNet  MATH  Google Scholar 

  15. Pagani, C.D. and Pierotti, D., The subcritical motion of a semisubmerged body: solvability of the free-boundary problem, SIAM J. Math. Anal., 2004, vol. 36, pp. 69–93.

    Article  MathSciNet  MATH  Google Scholar 

  16. Duchene, V., Asymptotic models for the generation of internal waves by a moving ship, and the deadwater phenomenon, Nonlinearity, 2011, vol. 24, pp. 2281–2323.

    Article  MathSciNet  MATH  Google Scholar 

  17. Mercier, M., Vasseur, R., and Dauxois, T., Resurrecting dead-water phenomenon, Nonlinear Processes Geophys., 2011, vol. 18, pp. 193–208.

    Article  Google Scholar 

  18. Yeung, R.W. and Nguyen, T.C., Waves generated by a moving source in a two-layer ocean of finite depth, J. Engrg. Math., 1999, vol. 35, pp. 85–107.

    Article  MathSciNet  MATH  Google Scholar 

  19. Miloh, T., Tulin, M., and Zilman, G., Dead-water effects of a ship moving in stratified seas, J. Offshore Mech. Arct. Eng., 1993, vol. 115, pp. 105–110.

    Article  Google Scholar 

  20. Ekman, V.W., On dead water, in Scientific Results of the Norwegian North Polar Expedition, Christiania, 1904, vol. 5, pp. 1–152.

    Google Scholar 

  21. Sretenskii, L.N., On waves on the interface between two fluids and their application to the “dead-water” phenomenon, Zh. Geofiz., 1934, no. 4, pp. 332–370.

    Google Scholar 

  22. Sretenskii, L.N., On the wave resistance of a ship in the presence of internal waves, Izv. Akad. Nauk SSSR Mekh. i Mashinostr., 1959, no. 1, pp. 56–63.

    Google Scholar 

  23. Uspenskii, P.N., On the wave resistance of a ship in the presence of internal waves (under the condition of finite depth), Tr. Morsk. Gidrofiz. Inst., 1959, vol. 18, pp. 68–85.

    Google Scholar 

  24. Gorodtsov, V.A. and Teodorovich, E.V., On the theory of wave resistance (surface and internal waves), in N.E.Kochin i razvitie mekhaniki (N. E. Kochin and Development of Mechanics), Moscow: Nauka, 1984.

    Google Scholar 

  25. Stepanyants, Yu.A., Sturova, I.V., and Teodorovich, E.V., Linear theory of generation of surface and internal waves, Itogi Nauki i Tekhn. Mekh. Zhidk. i Gaza, Moscow: VINITI, 1987, vol. 21, pp. 93–179.

    Google Scholar 

  26. Motygin, O. and Kuznetsov, N., The wave resistance of a two-dimensional body moving forward in a two-layer fluid, J. Eng. Math., 1997, vol. 32, pp. 53–72.

    Article  MathSciNet  MATH  Google Scholar 

  27. Motygin, O.V., Solvability of boundary integral equations for the problem of a body moving in a twolayer fluid, Zh. Vychisl. Mat. Mat. Fiz., 2003, vol. 43, no. 2, pp. 279–286.

    MathSciNet  MATH  Google Scholar 

  28. Motygin, O. and Kuznetsov, N., On the forward motion of an interface-crossing body in a two-layer fluid: the role of asymptotics in problem’s statement, J. Eng. Math., 2011, vol. 69, pp. 113–134.

    Article  MathSciNet  MATH  Google Scholar 

  29. Nazarov, S.A. and Plamenevskii, B.A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei (Elliptic Problems in Domains with Piecewise Smooth Boundary), Moscow: Nauka, 1991.

    Google Scholar 

  30. Nicaise, S. and Sändig, A.M., General interface problems. 1, 2, Math. Meth. Appl. Sci., 1997, vol. 17, pp. 395–450.

    Article  MathSciNet  MATH  Google Scholar 

  31. Kuznetsov, N.G. and Maz’ya, V.G., On unique solvability of the plane Neumann–Kelvin problem, Mat. Sb., 1988, vol. 135, no. 4, pp. 440–462.

    MATH  Google Scholar 

  32. Anastassiou, G.A. and Dragomir, S.S., On some estimates of the remainder in Taylor’s formula, J. Math. Anal. Appl., 2001, vol. 263, pp. 246–263.

    Article  MathSciNet  MATH  Google Scholar 

  33. Vainberg, B.R. and Maz’ya, V.G., On the plane problem of the motion of a body immersed in a fluid, Tr. Mosk. Mat. Obs., 1973, vol. 28, pp. 35–56.

    Google Scholar 

  34. Ursell, F., Mathematical note on the two-dimensional Kelvin–Neumann problem, Proc. 13th Symp. Naval Hydrodynamics (Tokyo, 1980), Japan: Shipbuild. Res. Assoc., 1981, pp. 245–251.

    Google Scholar 

  35. Suzuki, K., Numerical studies of the Neumann–Kelvin problem for a two-dimensional semisubmerged body, Proceedings of the Third International Conference on Numerical Ship Hydrodynamics, Paris: Bassin d’Essais des Car`enes, 1982, pp. 83–95.

    Google Scholar 

  36. Motygin, O. and Kuznetsov, N., The problem of steady flow over a two-dimensional bottom obstacle, in: Around the Research of Vladimir Maz’ya II, Partial Differential Equations, Laptev, A., Ed., New York: Springer Sci., 2010, pp. 253–274.

    Google Scholar 

  37. Motygin, O.V., Uniqueness and solvability in the linearized two-dimensional problem of a body in a finite depth subcritical stream, European J. Appl. Math., 1999, vol. 10, pp. 141–156.

    Article  MathSciNet  MATH  Google Scholar 

  38. Lahalle, D., Calcul des efforts sur un profil portant d’hydroptere par couplage eléments finis—représentation intégrale, Rapport de Recherche, Paris: ENSTA, 1984, no. 187.

    Google Scholar 

  39. Wigley, N.M., Mixed boundary value problems in plane domains with corners, Math. Z., 1970, vol. 115, pp. 33–52.

    Article  MathSciNet  MATH  Google Scholar 

  40. Maz’ya, V.G., Boundary integral equations, Itogi Nauki Tekh. Sovrem. Probl. Mat. Fundam. Napravl., 1988, vol. 27, pp. 132–228.

    Google Scholar 

  41. Carleman, T., Über das Neumann-Poincarésche Problem für ein Gebiet mit Ecken, Uppsala: Almqvist & Wiksell, 1916.

    MATH  Google Scholar 

  42. Werner, P., A Green’s function approach to the potential flow around obstacles in a two-dimensional channel, Methoden und Verfahren der math. Physik, Frankfurt am Main et al.: P.Lang, 1991, vol. 37.

    Google Scholar 

  43. Trofimov, V.P., The root subspaces of operators that depend analytically on a parameter, Mat. Issled., 1968, vol. 3, no. 9, pp. 117–125.

    MathSciNet  MATH  Google Scholar 

  44. Motygin, O.V. and McIver, P., A uniqueness criterion for linear problems of wave–body interaction, IMA J. Appl. Math., 2003, vol. 68, pp. 229–250.

    Article  MathSciNet  MATH  Google Scholar 

  45. Kanatnikov, A.N. and Krishchenko, A.P., Lineinaya algebra (Linear Algebra), Moscow: Moskov. Gos. Tekh. Univ., 2002.

    Google Scholar 

  46. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Abramowitz, M. and Stegun, I.A., Eds., Washington: Government Printing Office, 1964.

  47. Krein, S.G. and Trofimov, V.P., Holomorphic operator-valued functions of several complex variables, Funktsional. Anal. Prilozhen., 1969, vol. 3, no. 4, pp. 85–86.

    MathSciNet  Google Scholar 

  48. Krein, S.G. and Trofimov, V.P., Noetherian operators that depend holomorphically on parameters, in Trudy Mat. fakul’teta VGU, Trudy seminara po funkts. analizu. Sb. statei po funkts. prostranstvam i operatornym uravneniyam (A Collection of Articles on Function Spaces and Operator Equations. Proc. Sem. Functional Anal., Math. Fac., Voronezh State Univ., Voronezh, 1970), Voronezh: Voronezh. Gos. Univ., 1970, pp. 63–85.

    Google Scholar 

  49. Chirka, E.M., Kompleksnye analiticheskie mnozhestva (Complex Analytic Sets), Moscow: Nauka, 1985.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, N.G., Motygin, O.V. Surface and internal waves: The two-dimensional problem on forward motion of a body intersecting the interface between two fluids. Diff Equat 52, 1671–1706 (2016). https://doi.org/10.1134/S0012266116130024

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266116130024

Navigation