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Te systemic stability of a stock market is one of the core issues in the fnancial feld. Te market can be regarded as a complex
network whose nodes are stocks connected by edges that signify their correlation strength. Since the market is a strongly nonlinear
system, it is difcult to measure the macroscopic stability and depict market fuctuations in time. In this article, we use a geometric
measure derived from discrete Ricci curvature to capture the higher-order nonlinear architecture of fnancial networks. In order to
confrm the efectiveness of our method, we use it to analyze the CSI 300 constituents of China’s stock market from 2005 to 2020
and the systemic stability of the market is quantifed through the network’s Ricci-type curvatures. Furthermore, we use a hybrid
model to analyze the curvature time series and predict the future trends of the market accurately. As far as we know, this is the frst
article to apply Ricci curvature to forecast the systemic stability of China’s stock market, and our results show that Ricci curvature
has good explanatory power for the market stability and can be a good indicator to judge the future risk and volatility of China’s
stock market.

1. Introduction

Trough more than thirty years of development, China’s
capital market has grown continuously. With improvements
of the trading mechanism, the market stability has been
gradually enhanced and the market plays a more and more
important role in optimizing the social fnancing structure
and promoting the allocation of resources. On the other
hand, China’s fnancial market is in its infancy, and ab-
normal market fuctuations still occur occasionally. For
example, from 2007 to 2008, the Shanghai Composite Index
fell from 6124, the highest point, to 1664, a drop of 70%.
During the market crash in 2015, the market experienced
signifcant abnormal fuctuations which lasted for half a year.
As the key factors of derivative pricing and fnancial risk
management, it is of great signifcance to study how to
measure and forecast the market stability reasonably and
accurately. Tis kind of ability to analyze and predict the

market is conducive to the objective and quantifable
evaluation of China’s fnancial market, the analysis of market
stability factors, and the formulation of targeted policies so
as to realize the early warning and prevention of fnancial
risks and the maintenance of fnancial stability.

Te stock market is a nonlinear and nonstationary
system with strong volatility, tight coupling, and asymmetry.
Individual stocks in the market interact with each other, and
the abnormal fuctuations of individuals may quickly enlarge
to the whole market. To better understand the highly cor-
related market, as well as to achieve monitoring and ad-
justment of it, economists advocate the use of many new
tools and interdisciplinary approaches, such as trigger
points, feedback, contagion, and complexity theory [1–6]. In
particular, to describe the stability macroscopically, we
should not consider each individual separately but should
regard the market as a whole system, which coincides with
the nature of complex networks [7, 8]. Empirical cross-
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correlation among stock prices has been extensively studied
and explored for more than two decades [9–14]. Te cor-
relation between stock returns allows us to construct a va-
riety of correlation-based networks, such as minimum
spanning trees (MST) [10, 15–17] or threshold networks
[18], where nodes represent stocks and edges represent
correlation strength (or converted to a distance metric). In
recent years, correlation-based networks become one of the
common tools for modeling and analyzing complex fnancial
systems [14, 15, 19–21].

Since there are interactions that occur among groups of
more nodes besides pairwise interactions, to reveal the
higher-order nonlinear relationship in a network [22–25],
curvature, which is a key concept in geometry proposed by
Jost [26], can be an appropriate and powerful tool, and it
has been increasingly used as network metrics in recent
years [24, 25, 27, 28]. In 2015, Sandhu et al. [29] applied the
graph curvature to cancer networks for the frst time.
Sandhu et al. [28] also studied the evolution of Olli-
vier–Ricci curvature in the fnancial threshold network and
showed that Ollivier–Ricci curvature could be used to
determine the stability of USA S & P-500 over the period
1998–2013. A recent study by Samal et al. [30] confrmed
that discrete Ricci curvature could be an excellent indicator
of stability and volatility for fnancial markets of USA and
Japan. For the fnancial market in China, relevant studies
have confrmed that it has signifcant small-world efect
and scale-free feature [31–33], which provide us a theo-
retical basis for the combination of network geometry and
China’s fnancial market. In summary, the description of
the stability of China’s stock market through geometric
measurement is the frst motivation of the research work in
this article.

In addition to measure the stability, prediction of trends
of the market is also an exciting research area and this is
another main purpose of this article. We will use a hybrid
machine learning model which combines deep neural net-
work and wavelet decomposition to achieve this goal. We
remark that, because the fnancial curvature time series are
complex, nonstationary, and very noisy, the classic time
series models, such as ARIMA, GARCH, et al., are not
suitable for this task.

Since deep learning models can successfully extract
features of real-world data, combining deep learning with
fnancial market forecasting is regarded as a charming
strategy [34]. Among them, recurrent neural network
(RNN) [35, 36] is a kind of recursive neural network which is
using sequence data as input, recursive in the direction of the
evolution of sequence, and chained by all nodes. To over-
come gradient disappearance and gradient explosion of
RNN, a specifc kind of RNN named long short-term
memory (LSTM) [37, 38], which takes into account the
long-term dependence of time series, is gradually used in
time series forecasting. Kumar and Ningombam [39] eval-
uated the efectiveness of LSTM for making predictions
about stock prices of APPL (Apple Inc./NASDAQ). Liu [40]
applied LSTM to the large interval volatility forecasting of
S&P 500 and AAPL and fnally concluded that LSTM could
achieve a better forecasting result than GARCH (1, 1).

Huang, et al. [41] decomposed fnancial data into long-term
and short-term trends by variational mode decomposition
and then utilized LSTM to predict the future trends of the
sequences.

Wavelet decomposition (WD) is an approach that de-
scribes the relationship between the time series in time and
frequency domains simultaneously. Trough wavelet de-
composition, the noise feature of time series can be fxed.
Terefore, it is natural to combine wavelet decomposition
and forecasting models to improve the prediction accuracy
of time series. In the research of impact of COVID-19 on the
global economy, Štifanić, et al. [42] integrated the stationary
wavelet transform and bidirectional long short-term
memory neural network to forecast crude oil and stock
prices and achieved satisfactory results. Peng, et al. [43]
applied a LSTM-based model into energy consumption
forecasting, which also combined wavelet decomposition
and LSTM, and achieved a prediction accuracy better than
the basic LSTM model.

In the present article, according to the previous works
and our two main purposes, we frst construct a threshold
network based on the daily returns of the constituents of the
CSI 300 index over 16 years. Te main objective of this study
is to confrm that discrete Ricci curvature can be applied to
networks of China’s stock market and can accurately de-
scribe its systemic stability. We fnd that Ricci curvature
provides a good response to the systemic characteristic of the
fnancial market in China and we can use this tool to identify
important events (good or bad) in the market. As another
main contribution, we develop a hybrid forecasting model
which provides a good response to the future trends of the
market.

2. Preliminaries

2.1. Graph and Minimum Spanning Tree. In mathematics,
a network is usually called graph, which is composed of
a fnite set of nodes and a set of edges between nodes,
denoted as G(V, E), where G is the graph, V is the set of
nodes inG, and E is the set of edges inG. Table 1 lists some of
the concepts related to graph.

For brevity, we only discuss undirected graphs. Two
nodes of a graph are said to be connected if there is a path
between them. If any two nodes in the graph are con-
nected, the graph is called a connected graph. Te span-
ning tree of a connected graph with n vertices is
a connected subgraph that contains all n vertices but has
only n − 1 edges. If an edge is added to a spanning tree, it
necessarily forms a ring, and if an edge is reduced, it is no
longer a connected graph.

2.1.1. Minimum Spanning Tree (MST). In a given undirected
graph G � (V, E), euv represents the edge connecting nodes
u and v, and ωuv represents the weight of this edge. If there
exists Twhich is a spanning tree of G and ω(T) is minimal, T
is called a minimal spanning tree of G. We usually use Prim’s
algorithm [44] to implement the construction of a minimum
spanning tree of a graph.
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2.2. Ricci-Type Curvatures for Network Analysis. As an im-
portant geometric quantity, the classical Ricci curvature
quantifes the deviation for the tangent direction and re-
quires a smooth manifold as well as a tensor and higher-
order derivatives [26]. Tis requirement is not applicable to
discrete graphs or networks, so it is necessary to discretize it
to apply in networks. In this work, we apply four diferent
types of discrete Ricci curvatures to the threshold network of
China’s stock market. Teir defnitions and applications can
be found in many relevant literature studies. For com-
pleteness, we briefy describe their defnitions here.

2.2.1. Ollivier–Ricci Curvature. Tis is a widely used dis-
cretization [25, 27, 28] of the classical Ricci curvature raised
by Ollivier [45, 46]. In recent years, it has also been applied
to fnancial networks [29, 30]. In a space with positive
curvature, the average distance between balls is less than the
center distance, while in a negative curved space, the op-
posite conclusion is reached. Ollivier–Ricci (OR) curvature
extends the previous observations from balls (volumes) to
measures (probabilities), and the OR curvature of the edge e
connecting nodes u and v is defned as

O(e) � 1 −
W1 mu, mv( 􏼁

d(u, v)
, (1)

in (1), mu and mv represent measures concentrated at nodes
u and v, d(u, v) is the distance between u and v, and W1 is
the Wasserstein distance [47] between the discrete prob-
ability measures mu and mv. Te Wasserstein distance is
given by

W1 mu, mv( 􏼁 � infμu,v∈􏽑 mu,mv( ) 􏽘

u′ ,v′( )∈V×V

d u
′
, v
′

􏼒 􏼓μu,v u
′
, v
′

􏼒 􏼓,

(2)

where Π(mu, mv) is the set of probability measures μu,v that
satisfy

􏽘

u′∈V

μu,v u
′
, v
′

􏼒 􏼓 � mv v
′

􏼒 􏼓, 􏽘

v′∈V

μu,v u
′
, v
′

􏼒 􏼓 � mu u
′

􏼒 􏼓. (3)

In addition, the probability distribution mu for u ∈ V

must be specifed, which is chosen to be uniform over the
neighboring nodes of u [48].

2.2.2. Forman–Ricci Curvature. Forman–Ricci (FR) curva-
ture is based on the relationship between the Riemannian
Laplace operator and the Ricci curvature [49]. It has been

shown that FR curvature and edge betweenness centrality
are highly correlated [25, 50]. In the undirected network, the
FR curvature of edge e connecting nodes u and v is defned as
[24].

F(e) � ωe

ωu

ωe

+
ωv

ωe

− 􏽘
eu∼e,ev∼e

ωu
�����ωeωeu

􏽰 +
ωv

�����ωeωev

􏽰⎡⎣ ⎤⎦⎛⎝ ⎞⎠, (4)

where ωe, ωu, and ωv denote the weights of the edge e, the
nodes u and v, respectively. In addition, eu ∼ e and ev ∼ e

denote the set of edges connecting u and v, respectively, but
excluding the edge e.

2.2.3. Menger–Ricci Curvature. Menger’s approach [51] is
based on viewing the graph as a metric space, and the path
length between two nodes is treated as the distance between
two points in the metric space. Suppose T is a triangle in the
metric space with sides a, b, and c, then Menger curvature of
T is given by

M(T) �
1

R(T)
�

�������������������
p(p − a)(p − b)(p − c)

􏽰

a · b · c
, (5)

where p � (a + b + c)/2 and R(T) is the radius of the cir-
cumscribed circle of the triangle T. Ten, Menger–Ricci (MR)
curvature of an edge e in a network can be defned as [52]

M(e) � 􏽘
Te∼e

M Te( 􏼁,
(6)

where Te ∼ e denotes the set of triangles formed by side e.

2.2.4. Haantjes–Ricci Curvature. Haantjes [53] defned the
curvature of a curve in a metric space as the ratio of the arc
length to the chord length of the curve. For a discrete
network, suppose that π � v0, v1, . . . , vn is a simple path
between nodes v0 and vn, l(π) is the length of the path, and
d(v0, vn) is the shortest distance between nodes v0 and vn.
Haantjes–Ricci (HR) curvature of the simple path π is

H
2
(π) �

l(π) − d v0, vn( 􏼁

d v0, vn( 􏼁
3 . (7)

Ten, HR curvature of an edge e can be defned as

H(e) � 􏽘
π∼e

H(π), (8)

where π ∼ e denotes the paths that connects the nodes
anchoring the edge e.

Table 1: Basic concepts of graphs.

Professional terminology Defnition
Directed edge Te edge has directions
Undirected edge Te edge has no direction
Directed graph All edges of the graph are directed edges
Undirected graph All edges in the graph are undirected
Directed complete graph A directed graph with edges between any two nodes
Undirected complete graph An undirected graph with edges between any two nodes
Weight Edge-related numbers
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Te previous four discretizations focus on capturing
diferent geometric properties portrayed by the classical
Ricci curvature. OR curvature can well capture the aspect of
volume growth of classical Ricci curvature. We use OR
curvature in networks to compare the average distance
between two nodes. FR curvature depicts the geodesic
difusivity of the classical Ricci curvature, and we use FR
curvature in networks to show the information spread at
the ends of edges. Both MR and HR curvatures can capture
the geodesics dispersal rate of the classical Ricci curvature.
In this work, we ignore the weights of the edges in the
network and calculate the average of edges for these four
discrete Ricci curvatures according to equations (1)–(8),
respectively, and considering the computational com-
plexity, we only use the path between nodes whose length is
less than or equal to 4 in the calculations of MR and HR
curvatures.

We remark that since we have already considered the
correlation coefcients of the stock’s return time series
during network construction, even if the weights of edges are
set to be equal to 1, the threshold network can still refect the
mutual infuence between stocks and describe the main
transmission mechanism of information in the market. At
the same time, taking uniform weights equal to 1 can ob-
viously save computing resources and improve computing
efciency.

2.3. Discrete Wavelet. Wavelet analysis is a time-frequency
analysis method and can achieve high resolution in both
time and frequency domains. Trough decomposing the
curvature time series of our fnancial networks into several
components based on various frequencies, wavelet analysis
is able to flter out the chaotic components so as to remove
the infuence of noises and improve the prediction perfor-
mance efectively.

Te wavelet transform is roughly divided into contin-
uous transform and discrete transform and both are based
on two specifc functions: mother wavelet function and
daughter wavelet function. For the continuous case, as-
suming ψ ∈ L2(R) and 􏽥ψ(ω) are the Fourier transform of
ψ(t), ψ(t) is called mother wavelet function, if 􏽥ψ(ω) meets

Cψ � 􏽚
|􏽥ψ(ω)|

2

|ω|
dω<∞, (9)

and the defnition of daughter wavelet function is as follows:

ψa,b(t) �
1
���
|a|

√ ψ
t − b

a
􏼠 􏼡, (10)

where a and b are, respectively, called the expansion factor
and translation factor.

Due to the fact that our curvature data are based on the
daily returns of stocks, we utilize the discrete wavelet
transform to decompose the time series. Assigning 2− j and
k2− j to a and b in equation (10), discrete daughter wavelet
function is as follows:

ψ2−j,k2−j (t) � 2j/2ψ 2j
t − k􏼐 􏼑, (11)

where j, k ∈ Z. For brevity, we use ψj,k(t) instead of
ψ2−j,k2−j (t) from now on. Te discrete wavelet transform
corresponding to ψj,k(t) is as follows:

DWf(j, k) �〈f,ψj,k〉 � 2j/2
􏽚

+∞

−∞
f(t)ψ 2j

t − k􏼐 􏼑dt, (12)

where f(t) ∈ L2(R) and ψ are the conjugates of ψ.
Our denoising process of wavelet decomposition is di-

vided into the following three steps:

Step 1: we determine a wavelet function and the
number of decomposition layers and then decompose
the original time series
Step 2: we select an appropriate threshold to eliminate
the fuctuations exceeding the threshold and retain the
specifc signals
Step 3: we reconstruct the retained signals to form
a new signal

3. Data and Methods

3.1. Data Description. Te data of this article are collected
from East money (https://www.eastmoney.com), including
daily closing prices forN� 111 stocks, T� 3889 trading days,
from January 4, 2005 to December 31, 2020. All the N� 111
stocks are constituents of the CSI 300 index. Due to some
unavoidable factors such as stock suspensions, some stocks
are missing their prices on certain trading days. Considering
that the stock prices do not change too much in a short
period of time, we fll the gaps with the data of previous
trading time.

First, for each stock, we construct a daily return time
series rk(t) according to the formula as follows:

rk(t) � lnPk(t) − lnPk(t − 1), (13)

where k � 1, 2, . . . , N, t � 2, 3, . . . , T and Pk(t) are the ad-
justed closing price of the kth stock at time t.Ten, the equal-
time Pearson cross-correlation coefcients cij of the daily
return time series of stock i and stock j are defned as

cij(t) �
Cov ri, rj􏼐 􏼑

σiσj

, (14)

where Cov(ri, rj) is the covariance of ri and rj in a time
interval of length τ, i, j � 1, . . . , N and t indicates the end
date of the interval of τ trading days. In our empirical re-
search, we use the following two schemes to divide time
series in order to better illustrate the reliability of our
conclusion by comparison of these two approaches.

(i) A nonoverlapping time interval of τ � 22 trading
days (one trading month)

(ii) An overlapping time interval of τ � 22 days, with
a rolling shift of Δ� 5 trading days (one trading
week)

Corresponding to correlation coefcients, we construct
the distance measures dij which are widely used for the
construction of fnancial networks [10, 15, 54].
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dij(t) �

����������

2 1 − cij(t)􏼐 􏼑

􏽱

. (15)

3.2. Treshold Network Construction. First, for a given time
interval of τ trading days ending on trading day t, we get
a distance matrix Dτ(t) whose elements are dij(t). Tis
distance matrix Dτ(t) can be considered as an edge-
weighted complete graph Gτ(t), whose nodes are stocks
and the weight of an edge between stocks i and j is given by
dij(t). Next, with the help of Prim’s algorithm [44], we create
MST Tτ(t) based on the complete graph Gτ(t), which selects
the most relevant connections of the stocks. Finally, to
capture more signifcant information in the market, we add
edges in Gτ(t) to connect nodes i and j in Tτ(t) if cij(t)> θ
for some threshold θ. Te complete graph constructed by
MSTand the threshold θ is called a threshold network and is
denoted as Sτ(t).

In this article, we set the threshold θ� 0.75 and use Sτ(t)

for calculating diferent kinds of Ricci curvatures.

3.3. Te Hybrid Forecasting Model. Due to the fact that the
curvature time series is composed of nonlinear features,
various temporal information pieces, and noises, it is
challenging to achieve an accurate forecasting result.
Wavelet decomposition can analyze the series from diferent
scales, which can not only refect the overall trend but also
extract the efective information of the series in details. On
the other hand, as a deep learning model, LSTM is able to
learn long-term correlations and mine complicated non-
linear relationships within the curvature series efectively.
Based on the previous facts, we propose a hybridWD-LSTM
model, combining the strengths of wavelet decomposition
and long short-term memory network, to forecast the future
trends of the market. Te WD-LSTM model involves three
phrases: decomposition, forecasting, and integration. In the
decomposition phrase, we decompose the original curvature
series data into four high frequency sequences (detail) and
one low frequency sequence (approximation). Next, in the
forecasting phrase, LSTM is utilized to forecast each
decomposed sequence, respectively. Finally, the prediction
results of all subsequences are aggregated in the integration
phrase. Te architecture of the WD-LSTM model is shown
in Figure 1.

LSTM used in the forecasting phrase is a specially
designed RNN and suitable for processing and forecasting
important events with very long intervals and delays in the
time series. Te architecture of LSTM at time t is com-
posed of four units: forget gate, input gate, output gate,
and cell state, which is shown in Figure 2. To clarify the
details of LSTM, we use W, U, and b with diferent
subscripts to denote the linear coefcients and biases of
these units.

Te output ft of forget gate at time t represents the
probability of forgetting the hidden cell state of the previous
layer, which can be calculated by

ft � σWfht−1 + Ufxt + bf􏼐 􏼑, (16)

where σ is the sigmoid activation function, ht−1 denotes the
state of the hidden layer at time t− 1, and xt denotes the
input vector at time t.

Te input gate is responsible for processing the current
input signal and composed of two parts depending on
sigmoid and tanh activation functions, respectively. Tis
gate can be formulated as

it � σ Wiht−1 + Uixt + bi( 􏼁,

at � tanh Waht−1 + Uaxt + ba( 􏼁.
􏼨 (17)

Te cell state is updated according to forget gate and
input gate which is formulated as

Ct � Ct−1 ⊙ft + at ⊙ it, (18)

where ⊙ denotes the Hadamard product.
Te output gate is formulated as

Ot � σ Woht−1 + Uoxt + bo( 􏼁, (19)

with the output state Ot and hidden cell state Ct at time t, the
hidden state of the cell is updated as

ht � Ot ⊙ tanh Ct( 􏼁. (20)

Finally, we set a forecast unit which is a fully con-
nected neural network with outputs as the forecasting
values Yt of the time series at time t + 1 according to the
hidden state ht:

Yt � σ Wht + b( 􏼁. (21)

Decomposition

Adam

LSTM

End

Final prediction result of
Ricci-type curvature series data

Input Layer

LSTM Layer

Regression Layer

Fully Connected Layer

Start

Ricci-type curvature series data

Discrete Wavelet Analysis

Details and Approximations of curvature series data

Forecast

Integration

Figure 1: Te architecture of WD-LSTM.
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To complete the building of the whole LSTM model, we
set four layers including the input layer, LSTM layer, fully
connected layer, and regression layer, as shown in Figure 1,
where the regression layer is used to give the mean square
error of the outputs.

4. Empirical Results

4.1. Market Stability. Exploring the explanatory power of
Ricci curvature for the stability of China’s stock market is
one of the main purposes of this article. We analyze the
logarithmic returns of constituents of the CSI 300 index over
a 16-year period (2005–2020) by means of building the
undirected network Sτ(t) with the threshold θ� 0.75. Te
MST and threshold network constructed based on the data
are shown in Figure 3, and Table 2 lists some of the ticker
symbols corresponding to numbers of nodes in the fgures.

Figure 4 depicts four curvature time series of the
threshold network Sτ(t) building with nonoverlapping time
intervals (τ � 22 trading days) and Figure 5 with a rolling
shift of Δ� 5. Obviously, the fuctuation trends of the
curvature time series which are obtained by using two
diferent data processing methods are essentially consistent,
which confrm the generalization performance of our
methods and the reliability of our conclusions.

We list some of the major events in China’s fnancial
market between 2005 and 2020 in Table 3. As key events in
the market, during these events, the rule, structure, par-
ticipants, or external environment of the market have

changed signifcantly and the stability should be poorer than
the normal periods. To verify the efectiveness of the geo-
metric quantities of networks, we compare these events and
the curvature time series and fnd out that the fuctuations of
the curvature time series can capture these key information
pieces of the market well. Some of the events are marked
with dotted lines in Figures 4 and 5.

Combining the results in Figures 4 and 5 and the events
in Table 3, we fnd that the four discrete Ricci curvatures can
depict the market stability. During the periods of those key
events, the curvature time series fuctuates to diferent de-
grees. In particular, when the news is signifcantly good or
bad, the time series shows large fuctuations. We therefore
believe that the discrete Ricci curvatures can serve as good
indicators of the stability for China’s stock market.

4.2. Forecasting of the Systemic Stability. To accomplish
another main purpose, we apply the WD-LSTM model to
analyze the curvature time series and forecast the future
trend of China’s stock market. Te WD-LSTM model
contains three phrases: decomposition, forecast, and in-
tegration. Te empirical results through the previous three
phrases are presented in detail in the following section.

4.2.1. Decomposition of Curvature Series. According to (10)
and (12), we frst decompose the original curvature series
into four high frequency sequences (detail) and one low
frequency sequence (approximation). For brevity, we choose

Symbol Description

Input Layer at time t

Output Layer at time t

Input gate at time t

Output gate at time t

Activation function

Cell state at time i

Forget state at time t

Hidden state of the cell at time i

Addition and Hadamard product
of matrix

Figure 2: Te architecture of LSTM.
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FR curvature series (Δ� 5) as an example and present its
decomposition results in Figure 6.

4.2.2. Forecast of Decomposed Sequences. Te second step of
the WD-LSTM model is to forecast each component
decomposed by theWDmodule by using the LSTMmodule.
In our experiment, each decomposed sequence is divided
into the training set and testing set according to the pro-
portion of 80% and 20%. Since τ � 22 and Δ� 5, the training
time series is from February 2, 2015 to November 2, 2017.
Te number of LSTM layers is set to be 200. While in the
process of training the LSTM model, the max iteration and

the initial learning rate is set to be 250 and 0.005. Besides, the
optimizer of LSTM is chosen to be Adam and the gradient
threshold is set to be 1. After training, by using the back-
propagation algorithm, we use the hidden state ht−1 to
forecast the value at time t, where t is fromNovember 9, 2017
to December 31, 2020.

Figure 7 presents the forecasting result of decomposed
sequences of FR curvature series.

4.2.3. Integration of Forecasting Results. Te fnal step of the
WD-LSTM model is to integrate the forecasting results of
decomposed sequences. After the integration phrase, we can

Table 2: List of some of the ticker symbols.

Number 18 27 35 49 58 74 97 108
Ticker symbol 600109 600183 600346 600570 600703 601607 000786 002008

(a) (b)

Figure 3: Te MST and threshold network. (a) MST. (b) Treshold network.
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Figure 4: Type (i) curvature time series.
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get the fnal forecasting results of the curvature series. We
show the fnal forecasting results of the four Ricci-type
curvature series in Figure 8. We also list the evaluation
metrics of the fnal forecasting results, including mean
absolute error (MAE), mean square error (MSE), and R2, in
Table 4.

4.3. Model Comparison and Empirical Summary. To verify
the superiority of the WD-LSTM model, in this subsection,
we carry out a comparative experiment where a basic LSTM
model is utilized to forecast the four Ricci-type curvature
series directly. Table 5 presents the evaluation metrics of the
single LSTM model’s fnal forecasting results.

Comparing Tables 4 and 5, it is obvious that for each
evaluation metric, the forecasting performance of the
WD-LSTM model is signifcantly better than that of the
basic LSTM model for all the four Ricci-type curvature

series. It implies that the wavelet decomposition plays
a remarkable role and the hybrid model can handle the
strong nonlinearity, complex time characteristics, and noise
interference of the curvature series better than the single
LSTM model.

Furthermore, there must be performance diferences
between the four Ricci curvatures. Samal et al. [30] have
shown that FR curvature is more sensitive and can detect
both crashes and bubbles in USA S & P-500 and Japanese
Nikkei-225 markets more efciently. For China’s stock
market, comparison of R2 metrics for the four kinds of
curvatures in Tables 4 and 5 obviously implies that the
performance of the hybrid model is better than a single
LSTM model. In the hybrid model, all the four curvatures
have excellent explanatory power for depicting and fore-
casting the stability of China’s stock market. In particular,
the R2 metric of OR curvature series is closer to 1 than those
of the other three. We can infer that the OR curvature series
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Figure 5: Type (ii) curvature time series.

Table 3: List of some market events between 2005 and 2020.

Numbers Events Time/period
1 Shareholding reform May 2005
2 Subprime mortgage crisis Aug 2007
3 International fnancial crisis 2008-2009
4 Establishment of GEM 30 Oct 2009
5 First CSI 300 futures contracts listed 16 Apr 2010
6 CSRC proposed eight key tasks 14 Jan 2011
7 PBOC cut RMB RRR 30 Nov 2011
8 Suspension of IPO 2013
9 Te mix-up event of everbright securities 16 Aug 2013
10 Market crash in China 15 Jun-9 Jul 2015
11 Implementation of the meltdown mechanism 1 Jan 2016
12 Establishment of the STAR market 5 Nov 2018
13 Launch of Shanghai-London stock exchange 17 Jun 2019
14 First listing of the STAR stocks 22 Jul 2019
15 Impact of COVID-19 3 Mar-1 May 2020
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is more suitable for China’s market, which is diferent from
the conclusion about the foreign markets. Tis may refect
the diferent characteristics of China’s and foreign markets.
According to the defnitions of these two curvatures, FR
curvature is mainly aimed at capturing the difusion char-
acteristics of the geodesic, which is more sensitive to events
than other curvatures, and can better capture the details of
the market while OR curvature measures the relative dis-
tance between two respective neighborhoods of two vertices
that form an edge. Terefore, it is more suitable for China’s
market where macrocontrol measures are implemented
more efectively and the comovement efect of the stock
sectors is more obvious.

5. Conclusion

In this article, we apply diferent types of discrete Ricci
curvatures of networks to characterize the systemic stability
of China’s stock market. We verify the reliability of our
methods by monitoring the fuctuations of the constituents

of the CSI 300 index from 2005 to 2020 in conjunction with
Table 3.We fnd that network curvatures can be used as good
indicators for the systemic stability of China’s stock market.

Based on the above, we also make a more in-depth
application of the geometric measure. A hybrid
WD-LSTM model, combing wavelet decomposition with
long short-term memory network, is applied to forecast the
future trends of the systemic stability for China’s stock
market by means of modeling and predicting the curvature
series data. Comparing to the single LSTM model, the
WD-LSTM model performs signifcantly better. Moreover,
the empirical result shows that OR curvature is most suitable
for China’s market and the proposed hybrid model has
excellent forecasting performance.

In summary, we use discrete Ricci curvature as a mea-
sure of the stability for China’s fnancial market and apply an
efective hybrid model to forecast the future trends. Our
methods and models are very helpful to develop new f-
nancial regulatory tools to better identify, forecast, and
prevent market risks and contribute to fnancial stability.
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Figure 8: Te fnal forecasting results of four curvature series.

Table 4: Te evaluation metrics of the WD-LSTM model.

OR MR HR FR
MAE 0.0156 0.5409 73.9460 2.4413
MSE 0.0004 0.8745 14087.5311 18.1357
R2 0.9653 0.9295 0.8701 0.9459

Table 5: Te evaluation metrics of the single LSTM.

OR MR HR FR
MAE 0.0950 2.3464 200.4158 9.8831
MSE 0.0146 14.2501 186815.2867 251.1875
R2 −0.1271 −0.1495 −0.7230 0.2509
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