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ABSTRACT

Proof of Eigenvector Quantization Theorem

Theorem 1 (Eigenvector Quantization). Let M be a binary matrix with entries Mi j ∈ {0,1} and diagonal entries Mii = 0
for all i ∈ {1, . . . ,N}. Let G be the directed network with directed adjacency matrix M. Let X(t) = (X1(t), . . . ,XN(t)) be an
N-dimensional state vector, whose components Xi(t) evolve according to Eq. (1) from the main text. For all initial conditions
X(0), except for a set of Lebesgue-measure zero, the normalised vector x(t), defined component-wise as xi(t) = Xi(t)/∑ j X j(t),
converges to a stable fixed point x := limt→∞ x(t), for which the following holds:

Eigenvector Quantization: Suppose G contains only one single cycle. Then any component xi can be expressed as

xi = nixmin , (1)

where xmin is the minimal non-zero component and ni is a natural number. The value of xmin is taken by the cycle-nodes, and
the integer ni ≥ 0 is the number of directed paths that lead from cycle-nodes to node i. If there are no paths from cycle nodes,
then xi = 0.

Proof. Here we state some preliminary facts and definitions that allow us to outline and state the proof. First we define for each
pair of nodes i and j of the graph G the quantity δ (i, j), which measures the length of the longest directed path from i to j.
Furthermore we recall the eigenvalue equation for M

Mv = λv

and denote by λ1 the eigenvalue with the largest real part.The Perron–Frobenius theory states that λ1 = ρ(M) ≥ 0, where
ρ(M) ∈ R is the real-valued spectral radius of M, and furthermore that λ1 = 0 if and only if G contains no cycles1. Regarding
the outline of the proof, we first show a Lemma proving the convergence of Eq. (1) from the main text to the Perron-Frobenius
eigenvector by considering the cases λ1 = 0 and λ1 > 0 separately. Then we prove the eigenvector quantization.

Lemma 1. For all initial conditions X(0), except for a set of Lebesgue-measure zero, the normalised vector x(t), defined
component-wise as xi(t) = Xi(t)/∑ j X j(t), converges to a stable fixed point x := limt→∞ x(t) which satisfies Mx = λx.

Proof of Lemma: Case λ1 = 0. We will show that for almost all initial conditions the relative state vector x(t) converges to
a stable fixed point, which is a non-negative eigenvector of M. Let’s denote J := { j|M jk = 0 ∀k} as the set of nodes without



incoming links. Provided that X j(0)> 0 holds for all j ∈ J, then we can show by induction that

X (n)
k (t) =

tn

n! ∑
j:δ ( j,k)=n

X (0)
j (0)+O

(
tn−1) , (2)

where the superscript in X (n)
k indicates that the node k is at a δ -distance n from the set J, so that δ (J,k) = n. First, (2) holds for

n = 0, because dX (0)
j (t)/dt = 0 for any j ∈ J. Now, suppose that (2) holds for some n. We will show that it also holds for n+1.

Integrating

d
dt

X (n+1)
` = ∑

j:δ ( j,`)=1
X (n)

j (t) ,

and plugging equation (2) into it yields the desired result. This completes the proof by induction. Let nmax = max j,k δ ( j,k) be
the length the longest directed path in the network and denote kmax those nodes at the ends of those paths. Then following (2)

the states of the nodes kmax are of the order O(tnmax). Upon normalization, the relative state vector reads xk(t)'
X(n)

k

O
(

tnmax
) '

O
(

tn
)

O
(

tnmax
) = O

(
tn−nmax

)
, which vanishes as t → ∞ for any node k 6= kmax. It can also be seen that any x, whose components

vanish everywhere except on kmax, where they assume non-negative values, are eigenvectors of M with eigenvalue λ1 = 0,
because M jkmaxxkmax = 0 by definition of kmax having no outgoing links.

Case λ1 > 0.
We consider the eigenspace V of λ1. By considering the Frobenius normal form of the matrix M and applying By the Perron–
Frobenius theorem to all its irreducible factors we know that the components of the eigenvectors of to λ1 are all non-negative
reals. Hence the eigenspace is a subspace of RN and we define V := {v ∈ RN |Mv = λ1v} and its orthogonal complement
W = V⊥ with respect to the Euclidean inner product 〈·, ·〉. We pick an orthonormal basis {vα} of V and a basis {wβ} of
W , which together form an orthonormal basis of RN = V

⊕
W . Let us now consider an arbitrary solution X(t) of Eq. (1),

decomposed in that basis

X(t) = ∑
α

aα(t)vα +∑
β

bβ (t)w
β . (3)

We plug this decomposition into (??) and take the inner product with respect to the basis vectors vα ∈V and wβ ∈W . Then we
use the eigenvalue equation for λ1 and the orthogonality 〈vα ,wβ 〉= 0 to obtain dynamical equations for the components aα

and bβ

d
dt

aα(t) =λ1aα(t)+∑
β

bβ (t)〈vα ,Mwβ 〉

d
dt

bβ (t) =∑
β ′
〈wβ ,Mwβ ′〉bβ ′(t) . (4)

By defining the matrices B with components Bββ ′ = 〈wβ ,Mwβ ′〉 and C with components Cαβ = 〈vα ,Mwβ 〉 we can write the
formal solution of the ODE:

a(t) =eλ1ta(0)+ eλ1t
∫ t

0
ds e−λ1sCeBsb(0) (5)

b(t) =eBtb(0) , (6)

where a(t) and b(t) are the vectors with components aα(t) and bβ (t) respectively. First, we note from (5) and (6) that in any
norm ‖a(t)‖ ≥ eλ1t‖a(0)‖, by the triangle inequality. Let us for the rest of the argument consider only vectors X(0) with
‖a(0)‖> 0. Then it holds in any norm that ‖b(t)‖/‖a(t)‖ ≤ ‖e(B−λ1)tb(0)‖/‖a(0)‖→ 0 as t→∞. For the 2-norm ‖ ·‖2 it also
holds that ‖X(t)‖2

2 = 〈X(t),X(t)〉= ‖a(t)‖2
2 +‖b(t)‖2

2 and therefore

‖b(t)‖2
2

‖X(t)‖2
2
=
‖b(t)‖2

2

‖a(t)‖2
2

(
1+
‖b(t)‖2

2

‖a(t)‖2
2

)−1

−−→
t→∞

0 . (7)

2/5



Then we consider xi(t) = Xi(t)/‖X(t)‖1 from (3). We note that the 2-norm and the 1-norm are equivalent, which means that
there exist constants η and ξ ≥ η , such that η‖u‖2 ≤ ‖u‖1 ≤ ξ‖u‖2 for any u in a finite dimensional space RN . Now, one may
see from

〈wβ ,xi(t)〉2 =
b2

β
(t)

‖X(t)‖2
1
≤ ‖b(t)‖

2
2

‖X(t)‖2
1
≤ 1

η2
‖b(t)‖2

2

‖X(t)‖2
2
−−→
t→∞

0 ,

that those components of the limiting vector xi that are orthogonal to the eigenspace V vanish, precisely because 〈wβ ,xi〉=
limt→∞〈wβ ,xi(t)〉= 0 for all wβ ∈W .

We conclude that within the set of initial conditions ∆N−1 = {x ∈ RN : ‖x‖1 = 1 & xi ≥ 0 ∀i} there is a set of initial vectors
S0 = {x0 ∈ ∆N−1 : 〈V,x0〉 6= 0} whose limiting vectors x have been shown to possess non-vanishing components only in the
direction of V and no components in the direction of W , that is they belongs to the set Ω = {x ∈ ∆N−1 : 〈W,x0〉= 0}. First of all
S0 has full Lebesgue measure within ∆N−1. Secondly, Ω is closed in S0, because V is closed in RN (if it is a proper subspace,
otherwise the lemma is trivial) and therefore Ω =V ∩∆N−1 is closed in S0 =W c∩∆N−1, where W c is the set-complement of
W in RN . So points within ansome ε environment of the limiting set Ω converge to Ω, making it a stable limiting set and more
precisely a set of stable limiting points. Lastly, all those limiting vectors x in V satisfy by definition the eigenvalue equation
Mx = λx

Eigenvector quantization: Let us now prove the main theorem. Let x be the unique eigenvector of M (Perron–Frobenius
eigenvector) corresponding to λ1 = 1 when there is only one cycle C in G. As C is the unique strongly connected component
of G, only those nodes k, which are either in C or in the out-component Cout of C , have xk > 02. Consider an arbitrary node
c ∈ C . Since there is no contribution to xc from any of its upstream neighbours s that are in the in-component of C (as xs = 0)
and there is only one in-link from another c′ ∈ C to c, xc = Mcc′xc′ = xc′ .
Now let δi denote the maximal length of simple directed paths Pc from a cycle node c to a node i ∈ Cout. One can show that

xi = ∑
Pc

(
Mδi
)

icxc = nixc . (8)

where ni = ∑Pc

(
Mδi
)

ic, by induction on the length levels, denoted by δ .
Step 0: For δ = 0. Consider those nodes i with δi = δ = 0. These are precisely the cycle-nodes, which are at a distance 0 from
the cycle. We have already shown xc = M0xc′ and nc = 1 above.
Induction Step: Suppose (8) holds for all nodes i that have δi ≤ δ for some δ > 0. For all nodes j with δ j = δ +1, we have

x j = ∑
i

M jixi = ∑
i:δi=δ

M ji ∑
Pc

(
Mδi
)

icxc = n jxc ,

where n j = ∑P ′c

(
Mδi+1

)
jc and P ′

c denotes such directed paths from c to j that are the concatenation of Pc with the directed
edge from i to j. The relation (8) thus is proved.

Finally, as
(
Mr
)

ic yields the number of directed path of length r from any c to i1. Thus, by its definition, ni equals to the
number of directed paths that lead from those cycle-nodes to the node i. This together with the fact that xmin = xc, as nc = 1,
∀c ∈ C completes the proof of the eigenvector quantization.

Now we consider some extensions to the theorem.

Jain–Krishna model
Proof that the collapse is preceded by a single cycle regime
Let us define a collapse-keystone as a node that belongs to all the cycle(s) in G. Then we have the following result:

Proposition 1. Let v be a collapse-keystone node of a finite irreducible graph G with the adjacency matrix A, then either the
largest eigenvalue λ1 of G is equal to 1 or v is not the least populated node.

This result is easily extended to general graphs by considering their decomposition into irreducible components via the
Frobenius normal form. Let v be a collapse-keystone of a general graph G. The largest eigenvalue λ1 of G equals the largest
eigenvalue of all of its irreducible components. Since v must be part of all cycles, it is certainly inside this irreducible component
and we conclude by Proposition 1 that either λ1 = 1 for that component, and thus for the entire graph, or v is not the least
populated node of that component and thus not of the entire graph either.
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Proof. We prove this statement by showing its contraposition holds: Suppose λ1 > 1 and v is the least populated node, then
there exists at least one cycle in G that does not contain v, i.e., v is not a collapse-keystone.

Let D(v) := {w ∈ V : Awv = 1} be the set of downstream neighbours of v. Since v is the weakest, xw > xv for all w ∈D(v).
Furthermore, from λ1xw = ∑s6=v Awsxs +xv > λ1xv, we have ∑s 6=v Awsxs > (λ1−1)xv > 0. This means that each node w ∈D(v)
has at least one in-link that does not come directly from v, that is ∀w ∈D(v) ,∃s 6= v : Aws = 1.

Since there is no cycle that does not contain v, any in-link Aws to w ∈D(v) must be downstream from v through another
node w′ ∈D(v). Therefore, consider the subgraph G(D(v)) of G which is constructed as follow: in G(D(v)) a directed link
w2→ w1 is put if there exists a path from w2 to w1. By its construction, G(D(v)) is an irreducible graph with at least |D(v)|
directed links over |D(v)| nodes, hence G(D(v)) must contain at least one cycle. This cycle corresponds to a closed directed
path that does not contain v, so v is not a collapse-keystone.

Other precursors
Here we mention some other precursors that are typically used in time-series analysis:

Spectral radius of the correlation matrix. Let us consider a multivariate correlation coefficient matrix with some lag k:

CCi j(k) = ∑
t

(xi(t)−µi)(x j(t− k)−µ j)

σi(t)σ j(t− k)
. (9)

The spectral radius λC of the matrix CC(k) is considered as a precursor of a critical transition3.

Spectral radius of volatility. We define the volatility matrix as
σ2

i j(k) = ∑t(xi(t)−µi)(x j(t− k)−µ j)

Again, the spectral radius λV of σ2 is considered as a precursor of a critical transition3.

Expected Time-To-Collapse in the Jain–Krishna model
Proposition 2. The average life time of the Jain–Krisna model in the critical phase is

〈T 〉= e
m

, (10)

with variance

Var(T ) =
2e
m

( e
m
−1
)

. (11)

Proof. Suppose that at present the system is in the single-cycle phase; then a crash may happen at any next time step. The
probability Pd(T ) that the collapse happens at time T can be expressed as

Pd(T ) = (1− p)T−1 p , (12)

where p is the probability that a cycle-node is removed from the single-cycle. This equation implies that until T −1 only those
weakest nodes belonging to the periphery are removed, while one of the cycle-nodes is picked at T .

Let L denote the total number of the least fit species, those whose populations equal that of the cycle species. Since L
consists of nodes having only one incoming link (otherwise they would not be the weakest), the chance by which a node of the
graph belongs to the set L is

pw = 1−
(

1− m
N−1

)N−1

. (13)

For large sparse networks, we have pw ' m. Further, among these L nodes, let Lc be the number of cycle-nodes, so Lc ≤ L. If a
node is randomly chosen from L, the chance that it is a cycle-node is

pc =
Lc

L
. (14)

One can estimate this fraction using a combinatorial argument established by Gerbner et al.4: the number nL(k) of cycles
of length k contained in a directed graph with L vertices G(L) is given by, nL(k)∼=

(L−1
k−1

)k−1
. The function nL(k) is strongly

peaked at L̂c =
L−1

e +1, while it vanishes fast for any k 6= L̂c. Hence among all possible cycles of length k that can be formed
in G(L), the most likely one has length L̂c. Using L̂c to approximate Lc in (14), we obtain pc ' 1/e. Finally, probability, p,
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now can be defined as p = pc · pw = m
e , since this probability equals the probability m, that one of those weakest nodes is

chosen for removal, times the probability 1/e, that it comes from the cycle. Note that the approximation, pw ' m, becomes
worse for small values of N. For this case, one should use the exact expression (13). Substituting p = m/e in (12), we can
calculate the expected time-to-collapse as 〈T 〉= ∑

∞
T=1 T Pd(T ) = ∑

∞
T=1 T

(
1− m

e

)T−1 m
e = e

m . An analog computation yields〈
(T −〈T 〉)2

〉
= 2e

m

( e
m −1

)
.
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