Supplementary information: Predicting collapse of adaptive networked systems without knowing the network

Leonhard Horstmeyer ${ }^{1,2,+}$, Tuan Minh Pham ${ }^{1,2,+}$, Jan Korbel ${ }^{1,2,+}$, and Stefan Thurner ${ }^{1,2,3,4,+, *}$
${ }^{1}$ Section for the Science of Complex Systems, CeMSIIS, Medical University of Vienna, Spitalgasse 23, A-1090, Vienna, Austria
${ }^{2}$ Complexity Science Hub Vienna, Josefstädterstrasse 39, A-1080 Vienna, Austria
${ }^{3}$ Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
${ }^{4}$ IIASA, Schlossplatz 1, 2361 Laxenburg, Austria
*To whom correspondence should be addressed. E-mail: stefan.thurner@meduniwien.ac.at
${ }^{+}$these authors contributed equally to this work

Abstract

\section*{Proof of Eigenvector Quantization Theorem}

Theorem 1 (Eigenvector Quantization). Let M be a binary matrix with entries $M_{i j} \in\{0,1\}$ and diagonal entries $M_{i i}=0$ for all $i \in\{1, \ldots, N\}$. Let G be the directed network with directed adjacency matrix M. Let $X(t)=\left(X_{1}(t), \ldots, X_{N}(t)\right)$ be an N-dimensional state vector, whose components $X_{i}(t)$ evolve according to Eq. (1) from the main text. For all initial conditions $X(0)$, except for a set of Lebesgue-measure zero, the normalised vector $x(t)$, defined component-wise as $x_{i}(t)=X_{i}(t) / \sum_{j} X_{j}(t)$, converges to a stable fixed point $x:=\lim _{t \rightarrow \infty} x(t)$, for which the following holds:

Eigenvector Quantization: Suppose G contains only one single cycle. Then any component x_{i} can be expressed as

$$
\begin{equation*}
x_{i}=n_{i} x_{\text {min }}, \tag{1}
\end{equation*}
$$

where $x_{\min }$ is the minimal non-zero component and n_{i} is a natural number. The value of $x_{\min }$ is taken by the cycle-nodes, and the integer $n_{i} \geq 0$ is the number of directed paths that lead from cycle-nodes to node i. If there are no paths from cycle nodes, then $x_{i}=0$.

Proof. Here we state some preliminary facts and definitions that allow us to outline and state the proof. First we define for each pair of nodes i and j of the graph G the quantity $\delta(i, j)$, which measures the length of the longest directed path from i to j. Furthermore we recall the eigenvalue equation for M

$$
M v=\lambda v
$$

and denote by λ_{1} the eigenvalue with the largest real part.The Perron-Frobenius theory states that $\lambda_{1}=\rho(M) \geq 0$, where $\rho(M) \in \mathbb{R}$ is the real-valued spectral radius of M, and furthermore that $\lambda_{1}=0$ if and only if G contains no cycles ${ }^{1}$. Regarding the outline of the proof, we first show a Lemma proving the convergence of Eq. (1) from the main text to the Perron-Frobenius eigenvector by considering the cases $\lambda_{1}=0$ and $\lambda_{1}>0$ separately. Then we prove the eigenvector quantization.

Lemma 1. For all initial conditions $X(0)$, except for a set of Lebesgue-measure zero, the normalised vector $x(t)$, defined component-wise as $x_{i}(t)=X_{i}(t) / \sum_{j} X_{j}(t)$, converges to a stable fixed point $x:=\lim _{t \rightarrow \infty} x(t)$ which satisfies $M x=\lambda x$.

Proof of Lemma: Case $\lambda_{1}=0$. We will show that for almost all initial conditions the relative state vector $x(t)$ converges to a stable fixed point, which is a non-negative eigenvector of M. Let's denote $J:=\left\{j \mid M_{j k}=0 \forall k\right\}$ as the set of nodes without
incoming links. Provided that $X_{j}(0)>0$ holds for all $j \in J$, then we can show by induction that

$$
\begin{equation*}
X_{k}^{(n)}(t)=\frac{t^{n}}{n!} \sum_{j: \delta(j, k)=n} X_{j}^{(0)}(0)+\mathscr{O}\left(t^{n-1}\right) \tag{2}
\end{equation*}
$$

where the superscript in $X_{k}^{(n)}$ indicates that the node k is at a δ-distance n from the set J, so that $\delta(J, k)=n$. First, (2) holds for $n=0$, because $d X_{j}^{(0)}(t) / d t=0$ for any $j \in J$. Now, suppose that (2) holds for some n. We will show that it also holds for $n+1$. Integrating

$$
\frac{d}{d t} X_{\ell}^{(n+1)}=\sum_{j: \delta(j, \ell)=1} X_{j}^{(n)}(t)
$$

and plugging equation (2) into it yields the desired result. This completes the proof by induction. Let $n_{\max }=\max _{j, k} \delta(j, k)$ be the length the longest directed path in the network and denote $k_{\text {max }}$ those nodes at the ends of those paths. Then following (2) the states of the nodes $k_{\text {max }}$ are of the order $\mathscr{O}\left(t^{n_{\max }}\right)$. Upon normalization, the relative state vector reads $x_{k}(t) \simeq \frac{x_{k}^{(n)}}{\mathscr{O}\left(t^{\left.n_{\max }\right)}\right.} \simeq$ $\frac{\mathscr{O}\left(t^{n}\right)}{\mathscr{O}\left(t^{n_{\max }}\right)}=\mathscr{O}\left(t^{n-n_{\max }}\right)$, which vanishes as $t \rightarrow \infty$ for any node $k \neq k_{\max }$. It can also be seen that any x, whose components vanish everywhere except on $k_{\max }$, where they assume non-negative values, are eigenvectors of M with eigenvalue $\lambda_{1}=0$, because $M_{j k_{\max }} x_{k_{\max }}=0$ by definition of $k_{\max }$ having no outgoing links.

Case $\lambda_{1}>0$.

We consider the eigenspace V of λ_{1}. By considering the Frobenius normal form of the matrix M and applying By the PerronFrobenius theorem to all its irreducible factors we know that the components of the eigenvectors ef to λ_{1} are all non-negative reals. Hence the eigenspace is a subspace of \mathbb{R}^{N} and we define $V:=\left\{v \in \mathbb{R}^{N} \mid M v=\lambda_{1} v\right\}$ and its orthogonal complement $W=V^{\perp}$ with respect to the Euclidean inner product $\langle\cdot, \cdot\rangle$. We pick an orthonormal basis $\left\{v^{\alpha}\right\}$ of V and a basis $\left\{w^{\beta}\right\}$ of W, which together form an orthonormal basis of $\mathbb{R}^{N}=V \bigoplus W$. Let us now consider an arbitrary solution $X(t)$ of Eq. (1), decomposed in that basis

$$
\begin{equation*}
X(t)=\sum_{\alpha} a_{\alpha}(t) v^{\alpha}+\sum_{\beta} b_{\beta}(t) w^{\beta} . \tag{3}
\end{equation*}
$$

We plug this decomposition into (??) and take the inner product with respect to the basis vectors $v^{\alpha} \in V$ and $w^{\beta} \in W$. Then we use the eigenvalue equation for λ_{1} and the orthogonality $\left\langle v^{\alpha}, w^{\beta}\right\rangle=0$ to obtain dynamical equations for the components a_{α} and b_{β}

$$
\begin{align*}
\frac{d}{d t} a_{\alpha}(t) & =\lambda_{1} a_{\alpha}(t)+\sum_{\beta} b_{\beta}(t)\left\langle v^{\alpha}, M w^{\beta}\right\rangle \\
\frac{d}{d t} b_{\beta}(t) & =\sum_{\beta^{\prime}}\left\langle w^{\beta}, M w^{\beta^{\prime}}\right\rangle b_{\beta^{\prime}}(t) \tag{4}
\end{align*}
$$

By defining the matrices B with components $B_{\beta \beta^{\prime}}=\left\langle w^{\beta}, M w^{\beta^{\prime}}\right\rangle$ and C with components $C_{\alpha \beta}=\left\langle v^{\alpha}, M w^{\beta}\right\rangle$ we can write the formal solution of the ODE:

$$
\begin{align*}
& a(t)=e^{\lambda_{1} t} a(0)+e^{\lambda_{1} t} \int_{0}^{t} d s e^{-\lambda_{1} s} C e^{B s} b(0) \tag{5}\\
& b(t)=e^{B t} b(0) \tag{6}
\end{align*}
$$

where $a(t)$ and $b(t)$ are the vectors with components $a_{\alpha}(t)$ and $b_{\beta}(t)$ respectively. First, we note from (5) and (6) that in any norm $\|a(t)\| \geq e^{\lambda_{1} t}\|a(0)\|$, by the triangle inequality. Let us for the rest of the argument consider only vectors $X(0)$ with $\|a(0)\|>0$. Then it holds in any norm that $\|b(t)\| /\|a(t)\| \leq\left\|e^{\left(B-\lambda_{1}\right) t} b(0)\right\| /\|a(0)\| \rightarrow 0$ as $t \rightarrow \infty$. For the 2-norm $\|\cdot\|_{2}$ it also holds that $\|X(t)\|_{2}^{2}=\langle X(t), X(t)\rangle=\|a(t)\|_{2}^{2}+\|b(t)\|_{2}^{2}$ and therefore

$$
\begin{equation*}
\frac{\|b(t)\|_{2}^{2}}{\|X(t)\|_{2}^{2}}=\frac{\|b(t)\|_{2}^{2}}{\|a(t)\|_{2}^{2}}\left(1+\frac{\|b(t)\|_{2}^{2}}{\|a(t)\|_{2}^{2}}\right)^{-1} \underset{t \rightarrow \infty}{\longrightarrow} 0 \tag{7}
\end{equation*}
$$

Then we consider $x_{i}(t)=X_{i}(t) /\|X(t)\|_{1}$ from (3). We note that the 2-norm and the 1-norm are equivalent, which means that there exist constants η and $\xi \geq \eta$, such that $\eta\|u\|_{2} \leq\|u\|_{1} \leq \xi\|u\|_{2}$ for any u in a finite dimensional space \mathbb{R}^{N}. Now, one may see from

$$
\left\langle w^{\beta}, x_{i}(t)\right\rangle^{2}=\frac{b_{\beta}^{2}(t)}{\|X(t)\|_{1}^{2}} \leq \frac{\|b(t)\|_{2}^{2}}{\|X(t)\|_{1}^{2}} \leq \frac{1}{\eta^{2}} \frac{\|b(t)\|_{2}^{2}}{\|X(t)\|_{2}^{2}} \underset{t \rightarrow \infty}{ } 0
$$

that those components of the limiting vector x_{i} that are orthogonal to the eigenspace V vanish, precisely because $\left\langle w^{\beta}, x_{i}\right\rangle=$ $\lim _{t \rightarrow \infty}\left\langle w^{\beta}, x_{i}(t)\right\rangle=0$ for all $w^{\beta} \in W$.

We conclude that within the set of initial conditions $\Delta^{N-1}=\left\{x \in \mathbb{R}^{N}:\|x\|_{1}=1 \& x_{i} \geq 0 \forall i\right\}$ there is a set of initial vectors $\mathscr{S}_{0}=\left\{x_{0} \in \Delta^{N-1}:\left\langle V, x_{0}\right\rangle \neq 0\right\}$ whose limiting vectors x have been shown to possess non-vanishing components only in the direction of V and no components in the direction of W, that is they belongs to the set $\Omega=\left\{x \in \Delta^{N-1}:\left\langle W, x_{0}\right\rangle=0\right\}$. First of all \mathscr{S}_{0} has full Lebesgue measure within Δ^{N-1}. Secondly, Ω is closed in \mathscr{S}_{0}, because V is closed in R^{N} (if it is a proper subspace, otherwise the lemma is trivial) and therefore $\Omega=V \cap \Delta^{N-1}$ is closed in $\mathscr{S}_{0}=W^{c} \cap \Delta^{N-1}$, where W^{c} is the set-complement of W in \mathbb{R}^{N}. So points within ansome ε environment of the limiting set Ω converge to Ω, making it a stable limiting set and more precisely a set of stable limiting points. Lastly, all those limiting vectors x in V satisfy by definition the eigenvalue equation $M x=\lambda x$

Eigenvector quantization: Let us now prove the main theorem. Let x be the unique eigenvector of M (Perron-Frobenius eigenvector) corresponding to $\lambda_{1}=1$ when there is only one cycle \mathscr{C} in G. As \mathscr{C} is the unique strongly connected component of G, only those nodes k, which are either in \mathscr{C} or in the out-component $\mathscr{C}_{\text {out }}$ of \mathscr{C}, have $x_{k}>0^{2}$. Consider an arbitrary node $c \in \mathscr{C}$. Since there is no contribution to x_{c} from any of its upstream neighbours s that are in the in-component of \mathscr{C} (as $x_{s}=0$) and there is only one in-link from another $c^{\prime} \in \mathscr{C}$ to $c, x_{c}=M_{c c^{\prime}} x_{c^{\prime}}=x_{c^{\prime}}$.
Now let δ_{i} denote the maximal length of simple directed paths \mathscr{P}_{c} from a cycle node c to a node $i \in \mathscr{C}_{\text {out }}$. One can show that

$$
\begin{equation*}
x_{i}=\sum_{\mathscr{P}_{c}}\left(M^{\delta_{i}}\right)_{i c} x_{c}=n_{i} x_{c} \tag{8}
\end{equation*}
$$

where $n_{i}=\sum_{\mathscr{P}_{c}}\left(M^{\delta_{i}}\right)_{i c}$, by induction on the length levels, denoted by δ.
Step 0: For $\delta=0$. Consider those nodes i with $\delta_{i}=\delta=0$. These are precisely the cycle-nodes, which are at a distance 0 from the cycle. We have already shown $x_{c}=M^{0} x_{c^{\prime}}$ and $n_{c}=1$ above.
Induction Step: Suppose (8) holds for all nodes i that have $\delta_{i} \leq \boldsymbol{\delta}$ for some $\boldsymbol{\delta}>0$. For all nodes j with $\boldsymbol{\delta}_{j}=\boldsymbol{\delta}+1$, we have

$$
x_{j}=\sum_{i} M_{j i} x_{i}=\sum_{i: \delta_{i}=\delta} M_{j i} \sum_{\mathscr{P}_{c}}\left(M^{\delta_{i}}\right)_{i c} x_{c}=n_{j} x_{c}
$$

where $n_{j}=\sum_{\mathscr{P}_{c}^{\prime}}\left(M^{\delta_{i}+1}\right)_{j c}$ and \mathscr{P}_{c}^{\prime} denotes such directed paths from c to j that are the concatenation of \mathscr{P}_{c} with the directed edge from i to j. The relation (8) thus is proved.

Finally, as $\left(M^{r}\right)_{i c}$ yields the number of directed path of length r from any c to i^{1}. Thus, by its definition, n_{i} equals to the number of directed paths that lead from those cycle-nodes to the node i. This together with the fact that $x_{\min }=x_{c}$, as $n_{c}=1$, $\forall c \in \mathscr{C}$ completes the proof of the eigenvector quantization.

Now we consider some extensions to the theorem.

Jain-Krishna model

Proof that the collapse is preceded by a single cycle regime

Let us define a collapse-keystone as a node that belongs to all the cycle(s) in G. Then we have the following result:
Proposition 1. Let v be a collapse-keystone node of a finite irreducible graph G with the adjacency matrix A, then either the largest eigenvalue λ_{1} of G is equal to 1 or v is not the least populated node.

This result is easily extended to general graphs by considering their decomposition into irreducible components via the Frobenius normal form. Let v be a collapse-keystone of a general graph G. The largest eigenvalue λ_{1} of G equals the largest eigenvalue of all of its irreducible components. Since v must be part of all cycles, it is certainly inside this irreducible component and we conclude by Proposition 1 that either $\lambda_{1}=1$ for that component, and thus for the entire graph, or v is not the least populated node of that component and thus not of the entire graph either.

Proof. We prove this statement by showing its contraposition holds: Suppose $\lambda_{1}>1$ and v is the least populated node, then there exists at least one cycle in G that does not contain v, i.e., v is not a collapse-keystone.

Let $\mathscr{D}(v):=\left\{w \in \mathscr{V}: A_{w v}=1\right\}$ be the set of downstream neighbours of v. Since v is the weakest, $x_{w}>x_{v}$ for all $w \in \mathscr{D}(v)$. Furthermore, from $\lambda_{1} x_{w}=\sum_{s \neq v} A_{w s} x_{s}+x_{v}>\lambda_{1} x_{v}$, we have $\sum_{s \neq v} A_{w s} x_{s}>\left(\lambda_{1}-1\right) x_{v}>0$. This means that each node $w \in \mathscr{D}(v)$ has at least one in-link that does not come directly from v, that is $\forall w \in \mathscr{D}(v), \exists s \neq v: A_{w s}=1$.

Since there is no cycle that does not contain v, any in-link $A_{w s}$ to $w \in \mathscr{D}(v)$ must be downstream from v through another node $w^{\prime} \in \mathscr{D}(v)$. Therefore, consider the subgraph $G(\mathscr{D}(v))$ of G which is constructed as follow: in $G(\mathscr{D}(v))$ a directed link $w_{2} \rightarrow w_{1}$ is put if there exists a path from w_{2} to w_{1}. By its construction, $G(\mathscr{D}(v))$ is an irreducible graph with at least $|\mathscr{D}(v)|$ directed links over $|\mathscr{D}(v)|$ nodes, hence $G(\mathscr{D}(v))$ must contain at least one cycle. This cycle corresponds to a closed directed path that does not contain v, so v is not a collapse-keystone.

Other precursors

Here we mention some other precursors that are typically used in time-series analysis:
Spectral radius of the correlation matrix. Let us consider a multivariate correlation coefficient matrix with some lag k:

$$
\begin{equation*}
C C_{i j}(k)=\sum_{t} \frac{\left(x_{i}(t)-\mu_{i}\right)\left(x_{j}(t-k)-\mu_{j}\right)}{\sigma_{i}(t) \sigma_{j}(t-k)} . \tag{9}
\end{equation*}
$$

The spectral radius λ_{C} of the matrix $C C(k)$ is considered as a precursor of a critical transition ${ }^{3}$.
Spectral radius of volatility. We define the volatility matrix as
$\sigma_{i j}^{2}(k)=\sum_{t}\left(x_{i}(t)-\mu_{i}\right)\left(x_{j}(t-k)-\mu_{j}\right)$
Again, the spectral radius λ_{V} of σ^{2} is considered as a precursor of a critical transition ${ }^{3}$.

Expected Time-To-Collapse in the Jain-Krishna model

Proposition 2. The average life time of the Jain-Krisna model in the critical phase is

$$
\begin{equation*}
\langle T\rangle=\frac{e}{m} \tag{10}
\end{equation*}
$$

with variance

$$
\begin{equation*}
\operatorname{Var}(T)=\frac{2 e}{m}\left(\frac{e}{m}-1\right) \tag{11}
\end{equation*}
$$

Proof. Suppose that at present the system is in the single-cycle phase; then a crash may happen at any next time step. The probability $P^{d}(T)$ that the collapse happens at time T can be expressed as

$$
\begin{equation*}
P^{d}(T)=(1-p)^{T-1} p \tag{12}
\end{equation*}
$$

where p is the probability that a cycle-node is removed from the single-cycle. This equation implies that until $T-1$ only those weakest nodes belonging to the periphery are removed, while one of the cycle-nodes is picked at T.

Let L denote the total number of the least fit species, those whose populations equal that of the cycle species. Since L consists of nodes having only one incoming link (otherwise they would not be the weakest), the chance by which a node of the graph belongs to the set L is

$$
\begin{equation*}
p_{w}=1-\left(1-\frac{m}{N-1}\right)^{N-1} \tag{13}
\end{equation*}
$$

For large sparse networks, we have $p_{w} \simeq m$. Further, among these L nodes, let L_{c} be the number of cycle-nodes, so $L_{c} \leq L$. If a node is randomly chosen from L, the chance that it is a cycle-node is

$$
\begin{equation*}
p_{c}=\frac{L_{c}}{L} \tag{14}
\end{equation*}
$$

One can estimate this fraction using a combinatorial argument established by Gerbner et al. ${ }^{4}$: the number $n_{L}(k)$ of cycles of length k contained in a directed graph with L vertices $G(L)$ is given by, $n_{L}(k) \cong\left(\frac{L-1}{k-1}\right)^{k-1}$. The function $n_{L}(k)$ is strongly peaked at $\widehat{L_{c}}=\frac{L-1}{\mathrm{e}}+1$, while it vanishes fast for any $k \neq \widehat{L}_{c}$. Hence among all possible cycles of length k that can be formed in $G(L)$, the most likely one has length $\widehat{L_{c}}$. Using $\widehat{L_{c}}$ to approximate L_{c} in (14), we obtain $p_{c} \simeq 1 / e$. Finally, probability, p,
now can be defined as $p=p_{c} \cdot p_{w}=\frac{m}{e}$, since this probability equals the probability m, that one of those weakest nodes is chosen for removal, times the probability $1 / e$, that it comes from the cycle. Note that the approximation, $p_{w} \simeq m$, becomes worse for small values of N. For this case, one should use the exact expression (13). Substituting $p=m / e$ in (12), we can calculate the expected time-to-collapse as $\langle T\rangle=\sum_{T=1}^{\infty} T P^{d}(T)=\sum_{T=1}^{\infty} T\left(1-\frac{m}{e}\right)^{T-1} \frac{m}{e}=\frac{e}{m}$. An analog computation yields $\left\langle(T-\langle T\rangle)^{2}\right\rangle=\frac{2 e}{m}\left(\frac{e}{m}-1\right)$.

References

1. Cvetković, D., Doob, M. \& Sachs, H. Spectra of graphs: theory and application. Pure and applied mathematics (Academic Press, 1980).
2. Newman, M. Networks: An Introduction (OUP Oxford, 2010).
3. Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461 7260, 53-9, DOI: 10.1038/nature08227 (2009).
4. Gerbner, D., Keszegh, B., Palmer, C. \& Patkos, B. On the number of cycles in a graph with restricted cycle lengths. SIAM J. on Discret. Math. 32, 266-279, DOI: 10.1137/16M109898X (2018). https://doi.org/10.1137/16M109898X.
