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ON THE p-ADIC VALUATION OF HARMONIC NUMBERS

CARLO SANNA

Abstract. For any prime number p, let Jp be the set of positive integers n such that p
divides the numerator of the n-th harmonic number Hn. An old conjecture of Eswarathasan
and Levine states that Jp is finite. We prove that for x ≥ 1 the number of integers in Jp∩ [1, x]

is less than 129p2/3x0.765. In particular, Jp has asymptotic density zero. Furthermore, we show
that there exists a subset Sp of the positive integers, with logarithmic density greater than
0.273, and such that for any n ∈ Sp the p-adic valuation of Hn is equal to −blogp nc.

1. Introduction

For each positive integer n, let

Hn := 1 +
1

2
+

1

3
+ · · ·+ 1

n

be the n-th harmonic number. The arithmetic properties of harmonic numbers have been
studied since a long time. For example, Wolstenholme [7] proved in 1862 that for any prime
number p ≥ 5 the numerator of Hp−1 is divisible by p2; while in 1915, Taeisinger [6, p. 3115]
showed that Hn is never an integer for n > 1.

For each prime number p, let Jp be the set of positive integers n such that the numerator
of Hn is divisible by p. Eswarathasan and Levine [4] conjectured that Jp is finite for all
primes p, and provided a method to compute the elements of Jp. If Jp is finite, then, after
sufficient computation, their method gives a proof that it is finite. They computed J2 = ∅,
J3 = {2, 7, 22}, J5 = {4, 20, 24}, and

J7 = {6, 42, 48, 295, 299, 337, 341, 2096, 2390, 14675, 16731, 16735, 102728}.

Boyd [2], using some p-adic expansions, improved the algorithm of Eswarathasan and Levine,
and determined Jp for all primes p ≤ 547, except 83, 127, and 397; confirming that Jp is finite
for those prime numbers. Notably, he showed that J11 has 638 elements, the largest being an
integer of 31 digits. Boyd gave also an heuristic model predicting that Jp is always finite and
that its cardinality is #Jp = O

(
p2(log log p)2+ε

)
. However, the conjecture of Eswarathasan

and Levine is still open.
We write Jp(x) := Jp ∩ [1, x], for x ≥ 1. Our first result is the following.

Theorem 1.1. For any prime number p and any x ≥ 1, we have

#Jp(x) < 129p2/3x0.765.

In particular, Jp has asymptotic density zero.

For any prime number p, let νp(·) be the usual p-adic valuation over the rational numbers.
Boyd [2, Proposition 3.3] proved the following lemma.

Lemma 1.2. For any prime p, the set Jp is finite if and only if νp(Hn)→ −∞, as n→ +∞.

Therefore, the study of Jp is strictly related to the negative growth of the p-adic valuation of
Hn. It is well-known and easy to prove that ν2(Hn) = −blog2 nc. (Hereafter, bxc denotes the
greatest integer not exceeding the real number x.) Moreover, Kamano [5, Theorem 2] proved
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that ν3(Hn) can be determined easily from the expansion of n in base 3. Note that, since
obviously νp(k) ≤ blogp nc for any k ∈ {1, . . . , n}, we have the lower bound

(1) νp(Hn) ≥ −blogp nc.
Our next result shows that in (1) the equality holds quite often. We recall that the logarithmic
density of a set of positive integers S is defined as

δ(S) := lim
x→+∞

1

log x

∑
n∈S ∩ [1,x]

1

n
,

whenever this limit exists.

Theorem 1.3. For any prime number p, there exists a set Sp of positive integers, with loga-
rithmic density δ(Sp) > 0.273, and such that νp(Hn) = −blogp nc for each n ∈ Sp.

2. Proof of Theorem 1.1

For any prime p, define the sequence of sets J
(1)
p , J

(2)
p , . . . as follow:

J (1)
p :=

{
n ∈ {1, . . . , p− 1} : p | Hn

}
,

J (k+1)
p :=

{
pn+ r : n ∈ J (k)

p , r ∈ {0, . . . , p− 1}, p | Hpn+r

}
∀k ≥ 1.

First, we need the following lemma.

Lemma 2.1. For all prime numbers p, we have J
(k)
p = Jp ∩ [pk−1, pk[, for each integer k ≥ 1.

In particular, Jp =
⋃∞

k=1 J
(k)
p .

Proof. From [4, Eq. 2.5] we know that if n is a positive integer and r ∈ {0, . . . , p − 1}, then
pn+ r ∈ Jp implies that n ∈ Jp. Therefore, the claim follows quickly by induction on k. �

Now we prove a result regarding the number of elements of Jp in a short interval.

Lemma 2.2. For any prime p, and any real numbers x and y, with 1 ≤ y < p, we have

#
(
Jp ∩ [x, x+ y]

)
<

3y2/3

2
+ 1.

Proof. Set c := #
(
Jp ∩ [x, x+ y]

)
. If c ≤ 1, then there is nothing to prove. Hence, suppose

c ≥ 2 and let n1 < · · · < nc be the elements of Jp ∩ [x, x+ y]. Moreover, define di := ni+1−ni,
for any i = 1, . . . , c− 1. Given a positive integer d, consider the polynomial

(2) fd(X) := (X + 1)(X + 2) · · · (X + d).

Taking the logarithms of both sides of (2) and differentiating, we obtain the identity

f ′d(X)

fd(X)
=

1

X + 1
+

1

X + 2
+ · · ·+ 1

X + d
.

Thus for any i = 1, . . . , c− 1 we have

f ′di(ni)

fdi(ni)
=

1

ni + 1
+

1

ni + 2
+ · · ·+ 1

ni+1
= Hni+1 −Hni ≡ 0 mod p,

so that f ′di(ni) ≡ 0 mod p. Since f ′d(X) is a non-zero polynomial of degree d− 1, there are at

most d− 1 solutions modulo p of the equation f ′d(X) ≡ 0 mod p. Therefore, for any z ≥ 1, on
the one hand we have

(3) #{i : di ≤ z} =
∑

1≤ d≤ z

#{i : di = d} ≤
∑

1≤ d≤ z

(d− 1) <
z2

2
.

On the other hand,

(4) #{i : di > z} < 1

z

c−1∑
i=1

di =
nc − n1

z
≤ y

z
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In conclusion, by summing (3) and (4), we get

c− 1 = #{i : di ≤ z}+ #{i : di > z} < z2

2
+
y

z

and the claim follows taking z = y1/3. �

We are ready to prove Theorem 1.1. If p < 83 then, from the values of #Jp computed by

Boyd [2, Table 2], one can check that #Jp/p
2/3 < 129, so the claim is obvious. Hence, suppose

p ≥ 83, and put A := 3
2(p − 1)2/3 + 1. By the definition of the sets J

(k)
p , and Lemma 2.2, we

get that

#J (1)
p = #

(
Jp ∩ [1, p− 1]

)
< A,

while

#J (k+1)
p =

∑
n∈ J(k)

p

#
(
Jp ∩ [pn, pn+ p− 1]

)
< #J (k)

p ·A,

hence it follows by induction that #J
(k)
p < Ak.

Now let s be the positive integer determined by ps−1 ≤ x < ps. Note that ps /∈ Jp, indeed
νp(Hps) = −s (this is a particular case of Lemma 3.2 in the next section). Thanks to Lemma 2.1
and the previous considerations, we have

#Jp(x) ≤ #Jp(p
s) = #Jp(p

s − 1) =

s∑
k=1

#
(
Jp ∩ [pk−1, pk[

)
=

s∑
k=1

#J (k)
p

<

s∑
k=1

Ak <
A2

A− 1
·As−1 =

A2

A− 1
·
(
ps−1

)logp A
<

A2

A− 1
· x0.765 < 129p2/3x0.765,

since ps−1 ≤ x, while it can be checked quickly that logpA < 0.765. The proof is complete.

3. Proof of Theorem 1.3

For any integer b ≥ 2 and any d ∈ {1, . . . , b−1}, let Fb(d) be the set of positive integers that
have the most significant digit of their base b expansion equal to d. The set Fb(d) does not
have an asymptotic density, however Fb(d) has a logarithmic density. In fact, Fb(d) satisfies a
kind of Benford’s law [1], as shown by the following lemma.

Lemma 3.1. For all integers b ≥ 2 and d ∈ {1, . . . , b− 1}, we have δ(Fb(d)) = logb
(
1 + 1/d

)
.

Proof. See [3]. �

Write J∗p := {1, . . . , p− 1} \ J (1)
p .

Lemma 3.2. For p prime, d ∈ J∗p , and n ∈ Fp(d), we have νp(Hn) = −blogp nc.

Proof. Since n ∈ Fp(d), we can write n = pkd + r, where k := blogp nc and r < pk is a
non-negative integer. Hence,

(5) Hn =
n∑

m=1
pk -m

1

m
+

d∑
j=1

1

pkj
=

n∑
m=1
pk -m

1

m
+
Hd

pk
.

On the one hand, it is clear that the last sum in (5) has p-adic valuation greater than −k. On
the other hand, we have νp(Hd/p

k) = −k, since d ∈ J∗p and so p - Hd.
In conclusion, νp(Hn) = −k as desired. �

Now we can prove Theorem 1.3. Define the set Sp as

Sp :=
⋃

d∈ J∗
p

Fp(d).
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It follows immediately from Lemma 3.2 that νp(Hn) = −blogp nc, for each n ∈ Sp. Moreover,
since the sets Fp(d) are disjoint, and thanks to Lemma 3.1, we have

δ(Sp) :=
∑
d∈ J∗

p

δ(Fp(d)) =
∑
d∈ J∗

p

logp

(
1 +

1

d

)
≥

p−1∑
d=#J

(1)
p +1

logp

(
1 +

1

d

)
(6)

= logp

(
p

#J
(1)
p + 1

)
= 1−

log
(

#J
(1)
p + 1

)
log p

.

Suppose p ≥ 1013. By Lemma 2.2 we have

#J (1)
p = #(Jp ∩ [1, p− 1]) < 3

2(p− 2)2/3 + 1,

hence from (6) we get

δ(Sp) > 1−
log
(
3
2(p− 2)2/3 + 2

)
log p

> 0.273.

At this point, the proof is only a matter of computation. The author used the Python pro-
gramming language (since it has native support for arbitrary-sized integers) to compute the

numerators of the harmonic numbers Hn, up to n = 1012. Then he determined #J
(1)
p for each

prime number p < 1013, and using (6) he checked that the inequality δ(Sp) > 0.273 holds.
This required only a few seconds on a personal computer.

4. Concluding remarks

In the proof of Theorem 1.1, we used some of the values of #Jp from the tables of Boyd’s
paper. Boyd communicated to the referee that Alekseyev discovered 3 errors in those tables.
Namely, #J19 = 25, #J47 = 24 and #J59 = 23 rather than the values 19, 11 and 17 given by
Boyd. Luckily, this does not affect our result. In addition, the prime p = 509 with #Jp = 13
was omitted from Boyd’s Table 2. It has been checked that the other values in Boyd’s tables
are correct.

From the proof of Theorem 1.1, it is clear that with our methods one cannot obtain an upper
bound better than #Jp(x) < Cp2/3x2/3+ε, for some C, ε > 0. Similarly, in the statement of
Theorem 1.3 a logarithmic density greater than 1/3− ε cannot be achieved.

One way to obtain better results could be an improvement of Lemma 2.2, we leave this as
an open question for the readers.

Acknowledgements. The author thanks the anonymous referee for his careful reading of the
paper.
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