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Abstract. It appears that the only known representations for the Riemann
zeta function ζ(z) in terms of continued fractions are those for z = 2 and 3.
Here we give a rapidly converging continued-fraction expansion of ζ(n) for any
integer n ≥ 2. This is a special case of a more general expansion which we
have derived for the polylogarithms of order n, n ≥ 1, by using the classical
Stieltjes technique. Our result is a generalisation of the Lambert-Lagrange
continued fraction, since for n = 1 we arrive at their well-known expansion for
log(1 + z). Computation demonstrates rapid convergence. For example, the
11th approximants for all ζ(n), n ≥ 2, give values with an error of less than
10−9.

1. Introduction

Many analytic functions are known to have continued-fraction representations,
a majority of them obtained by Euler, Gauss, Stieltjes and Ramanujan [1, Chapter
12]; [2, Vol. 2, Chapters 3 and 4]; [3, Chapters 18 and 19]; [4, Chapter 6]; [5,
Appendix]. It appears that little is known about continued-fraction expansions of
the Riemann zeta function ζ, and only the continued fractions for ζ(2) and ζ(3) are
listed in the literature [1, pp. 150, 153 and 155]. See also the papers by Bradshaw
[6, p. 390] and Nesterenko [7, Theorem 2, p. 868]. The expansion [1, p. 155]

ζ(3) = 1 +
1
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found by Stieltjes also follows from the work of Apéry and was crucial to his famous
proof that ζ(3) is irrational. In this work we show that the classical Stieltjes tech-
nique enables us to derive a continued-fraction expansion for the polylogarithms.
Continued fractions for ζ(n), where n ≥ 2 is an integer, then follow as a special
case.
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2. Statement of the results

In what follows, a function depending on the parameter ν and defined by the
Dirichlet power series

Liν =
∞∑
k=1

zk

kν
(1)

is referred to as a polylogarithm. The series in (1) converges absolutely for all ν if
|z| < 1 for Reν > 0 if |z| = 1 and z 6= 1, and for Reν > 1 if z = 1. It is known that
the polylogarithm can be extended to the whole ν−plane by means of a contour
integral [8, p. 236, Eq. 7.189]. When Liν(z) is continued onto the z−plane, it has
three branch points: 0, 1 and ∞. Note that

Li1(z) = − log(1− z)(2a)

and

Liν(1) = ζ(ν), Liν(−1) = (21−ν − 1)ζ(ν)(2b)

for ν 6= 1.
The polylogarithm Lin of order n ≥ 1 is thoroughly covered in Lewin’s standard

text [8], while many formulae involving Liν(z) can be found in Vol. 3 of “Integrals
and Series” by Prudnikov, Brychkov and Marichev [9, Vol. 3, Appendix II.5, pp.
762-763].

An (infinite) continued fraction

K(ak/bk) =
∞
K
k=1

ak
bk

=
a1

b1 +

a2

b2 +

a3

b3 +
... =

a1

b1 + a2

b2+
a3

b3+...

(3a)

is said to converge if the sequence of its approximants

Fn =
n

K
k=1

ak
bk

=
a1

b1 +

a2

b2 +

a3

b3 +
...

+

an
bn

=
An

Bn
for n = 1, 2, 3, ...(3b)

(where Fn is nth approximant while An and Bn are the nth numerator and denom-
inator, respectively) converges in C ∪ {∞}. The value of the continued fraction is
then F = limFn

n→∞
. We say that K(ak/bk) diverges if this limit does not exist. The

numbers ak ∈ C \ {0} and bk ∈ C for all k are known as the kth partial numerator
and denominator, or simply as elements of the continued fraction.

Classical texts on the analytical theory of continued fractions are those of Perron
[2] and Wall [3], while a modern treatment of the topic can be found in Jones and
Thron [4], Henrici [10, Chapter 12] and Lorentzen and Waadeland [5]. A good
review of the theory is given by Baker [11, Chapters 4 and 5], while Chapter 12 of
Berndt’s treatise [1] can serve as excellent introductory text and an encyclopaedic
source.

Our results are as follows.

Theorem. Suppose that r is a non-negative integer and m and n are positive in-

tegers. For any fixed r, m and n, define A
(r)
m (n) as the determinant of an m ×m

matrix

A(r)
m (n) = det

∥∥∥∥ (−1)i+j+r

(r + i+ j − 1)n

∥∥∥∥
1≤i,j≤m

.(4)
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It is assumed that A
(r)
0 (n) = 1. Let Lin(z) and ζ(z) be the polylogarithm of order

n and the Riemann zeta function, respectively.

We have

−Lin(−z) =
∞
K
k=1

an,kz

1
=

an,1z

1 +

an,2z

1 +

an,3z

1 +
...(5a)

where the continued fraction converges and represents a single-valued branch of
the analytic function on the left for all complex z outside the cut (−∞,−1]. The
elements of the continued fraction are given by

an,1 = 1, an,2m = −A
(1)
m (n)A

(0)
m−1(n)

A
(0)
m (n)A

(1)
m−1(n)

, an,2m+1 = −A
(1)
m−1(n)A

(0)
m+1(n)

A
(0)
m (n)A

(1)
m (n)

.

(5b)

In particular, when z = 1 we have

log 2 =
∞
K
k=1

a1,k

1
and ζ(n) =

1

(1− 21−n)

∞
K
k=1

an,k
1

, n ≥ 2.

(5c)

Note. It is easily seen from the proof of the Theorem (Section 3) that it can be
extended to any real n ≥ 1. Moreover, it can be extended to the Lerch and the
Hurwitz zeta functions. However, in this work we limit ourselves only to the case
given in the Theorem.

3. Proof of the Theorem

Throughout this section, for each pair (a, b), such that −∞ ≤ a ≤ b ≤ ∞, we
let Φ(a, b) denote the family of all real-valued, bounded, monotone non-decreasing
functions φ(t) with infinitely many points of increase on a ≤ t ≤ b.

In order to prove the Theorem we shall use the result due to Markov (1895), here
stated without proof, in the form given by Jones and Thron [4, p. 344]. The proof
can be found in Perron [2, Vol. 2, pp. 198-202]. This result conveniently sums up
the classical analytical theory of continued fractions, developed mainly by Stieltjes.
Certain necessary details related to the Markov Theorem are further discussed in
the Notes below. First, preliminary definitions are required.

Two continued fractions K(ak/bk) and K(a∗k/b
∗
k) with nth approximants Fn

and F ∗n , respectively, are said to be equivalent, which is denoted by K(ak/bk) ∼=
K(a∗k/b

∗
k), if Fn = F ∗n for n = 1, 2, ..., i.e. if they have the same sequence of

approximants.
A regular C-fraction (regular corresponding fraction) is a continued fraction of

the form
a1z

1 +

a2z

1 +

a3z

1 +

a4z

1 +
..., ak 6= 0 for k = 1, 2, ....(6)

If ak > 0 for all k, then (6) is called the S-fraction (or the Stieltjes fraction).
A modified regular C-fraction is a continued fraction of the form

a1

1 +

a2

1 +

a3

1 +

a4

1 +
..., ak 6= 0 for k = 1, 2, ....(7)

If ak > 0 for all k, then (7) is called the modified S-fraction.
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For a given sequence {ck}∞k=0 the Hankel determinants H
(r)
m (of dimension m,

m = 1, 2, 3, ...) associated with sequence are defined by

H
(r)
0 = 1, H(r)

m =

∣∣∣∣∣∣∣∣
cr cr+1 ... cr+m−1

cr+1 cr+2 ... cr+m

cr+m−1 cr+m ... cr+2m−2

∣∣∣∣∣∣∣∣ (r = 0, 1, 2, ...).

(8)

A continued fraction
n

K
k=1

ak(z)

bk(z)
=

a1(z)

b1(z) +

a2(z)

b2(z) +

a3(z)

b3(z) +
...

with the nth approximant Fn(z), is said to correspond to the series
∑∞

k=0 ckz
−k at

z = ∞, if the following formal power series expansions are valid:

Fn(z)−
λn∑
p=0

cpz
−p = const z−(λn+1) + ... (n = 1, 2, 3, ...)

where λn →∞ as n→∞.

The Markov Theorem. If φ ∈ Φ(0, a), a > 0, then the modified S-fraction (see
Eq. 7 with ak > 0) which corresponds to the series

∞∑
k=0

(−1)kµkz
−k with µk =

∫ a

0

tkdφ(t)(9a)

(where µk is the kth moment of φ) at z = ∞, converges to the function∫ a

0

zdφ(t)

z + t
(9b)

for all z ∈ C such that z /∈ [w : −a ≤ w ≤ 0].

Notes (a) The integral of the form∫ b

a

f(x)du(x)

(see Eq. 9(a) and (b)) is called the Stieltjes-Riemann integral of f with respect to
u. The properties of such integral and the various conditions under which it exists
are discussed in detail by, for instance, Rudin [12, Chapter 6].

(b) Let φ ∈ Φ(0,∞). Then the following Stieltjes-Riemann integral

f(z) =

∫ ∞
0

dφ(t)

z + t

always exists, and f is analytic in the cut z−plane with the cut along the real axis
from −∞ to 0. It is said that f and φ form the Stieltjes transform pair (or that f
is the Stieltjes transform of φ), which is denoted by f = S{φ}. If φ is constant on
a ≤ t <∞, then f = S{φ} is given by [10, p. 160]

f(z) =

∫ a

0

dφ(t)

z + t
, z /∈ [w : −a ≤ w ≤ 0].

(c) The phrase “with infinitely many points of increase” (or “taking infinitely
many different values” in the definition of Φ(a, b) is used in order to exclude the
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case when φ is a piecewise constant function on [a, b], i.e. it “takes finitely many
different values”. It is thus ensured that f = S{φ} cannot be a rational function.

Proof of the Theorem. The proof is based on the Markov Theorem. First, we assert
that all φn defined by

φn(t) =


0,

1
(n−1)!

∫ t
0 {log(1/x)}n−1

dt,

φn(1) = 1,

t = 0,
0 < t ≤ 1,
t > 1,

(n = 1, 2, 3, ...),

(10)

belong to the class Φ(0,∞). Clearly, the integral in (10) exists for n = 1. When
n ≥ 2, we have [9, Vol. 1, p. 241, Entry 1.6.1.14]∫ t

ε

{log(1/x)}n−1
dx =

n−1∑
k=0

(−1)k
(n− 1)!

k!

(
t logk t− ε logk ε

)
for any real ε and t, 0 < ε < t. Since

lim ε
ε→0

logk ε = 0

the existence of the integral in (10) is assured. Note that all φn(t) are continuous
on the right at 0. It now follows without difficulty that all φn(t), when t ∈ [0, 1],
are strictly increasing and that 0 ≤ φn(t) ≤ 1. Further, the condition concerning
taking infinitely many different values is met. Thus, φn(t) ∈ Φ(0, 1). On [0,∞) all
φn are non-decreasing and bounded and φn ∈ Φ(0,∞), as stated.

Second, let φn be given by (10). Then fn, the Stieltjes transform of φn,

fn(z) =

∫ ∞
0

dφn(t)

z + t
=

1

(n− 1)!

∫ 1

0

{log(1/t)}n−1 dt

z + t

= −Lin(−1/z) (n = 1, 2, 3, ...)

(11)

is valid for all z ∈ C such that z /∈ [w : −1 ≤ w ≤ 0]. Indeed, the transform of φn
exists and the Stieltjes-Riemann integral reduces to the ordinary Riemann integral.
This integral, on making use of the substitution x = log(1/t) in [8, p. 312, Entry
A.3.8. (2)],

Lin(z) =
z

(n− 1)!

∫ ∞
0

xn−1dx

ex − z
(n = 1, 2, ...; |arg(1− z)| < π) ,

can be easily evaluated. Note that the Stieltjes pair in (11) is not listed either in
the Table of Stieltjes transforms in Erdélyi et al. [13, Chapter 14] or in Lewin’s
book [8, Appendix 3, p. 303].

Third, let fn be the Stieltjes transform of φn given by (11). Then by virtue of
(9a) we have

zfn(z) =
∞∑
k=0

cn,k(1/z)
k, |z| > 1 (n = 1, 2, 3, ...)

(12a)

with

cn,k =
(−1)k

(k + 1)n
= (−1)kµn,k = (−1)k

1

(n− 1)!

∫ 1

0

tk {log(1/t)}n−1
dt

(12b)
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where the µn,k are the moments of φn. This follows trivially from the series repre-
sentation of the polylogarithm in (1).

Fourth, let an,k be given by (5b) and (4). Then

−zLin(−1/z) =
an,1
1 +

an,2
z +

an,3
1 +

an,4
z +

..., an,k > 0,(13)

is valid for z ∈ C such that z /∈ [w : −1 ≤ w ≤ 0]. In order to show this, recall that,
in general, if for given a formal power series

∑∞
k=0 ckz

−k (“formal”, since the series
may not converge anywhere except at z = ∞) with the sequence of coefficients
{ck}∞k=0 there exists a modified C-fraction (see Eq. 7) which corresponds to the
series (at z = ∞), then the elements ak are given by [4, p. 226]

a1 =c0, a2m=−H
(1)
m H

(0)
m−1

H
(0)
m H

(1)
m−1

, a2m+1 =−H
(1)
m−1H

(0)
m+1

H
(0)
m H

(1)
m

, (m=1, 2, 3, ...)

where the H
(r)
m are the Hankel determinants associated with the sequence {ck}∞k=0

(see Eq. 8). In our case, there exists a modified C (in fact S, i.e. an,k > 0) frac-
tion (the existence and convergence are assured by the Markov Theorem) which
corresponds to the power series in (12). Further, the Hankel determinants asso-
ciated with {ck}∞k=0 in (12b) are exactly those defined by (4). In this way, the
representation in (13) follows.

Finally, knowing that the following two continued fractions are equivalent [4, pp.
386-387]

a1(1/z)

1 +

a2(1/z)

1 +

a3(1/z)

1 +

a4(1/z)

1 +
... ∼= (1/z)

a1

1 +

a2

z +

a3

1 +

a4

z +
...,

it is easy to obtain from (13) the proposed formula in (5a). The particular case
(5c) involving the logarithm and the Riemann zeta function is a straightforward
conseqence of (2) and (5a) for z = 1. This completes the proof of the Theorem.

4. Concluding remarks

Since C-fraction expansions are unique, for n = 1 our continued fraction in (5a)
must be [10, p. 534]

−Li1(−z) = log(1 + z) =
z

1+

z/2

z +

z/6

1 +

2z/6

1 +

2z/10

1 +

3z/10

z +
...

(14a)

which by an equivalence transformation may be rewritten in the form

log(1 + z) =
z

1+

12z

2 +

12z

3 +

22z

4 +

22z

5 +

32z

6 +
... .(14b)

This is a well-known expansion which goes back to Lambert (1770) and Lagrange
(1776) [3, p. 342]. Note that the expression for log(1+ z) equivalent to (14b) given
by Jones and Thron [4, p. 203] contains a misprint.

It is easy to demonstrate that the continued fraction in (14a) follows from our
equations in (5). First, the following

H(r)
m = det

∥∥∥∥ 1

r + i+ j − 1

∥∥∥∥
1≤i,j≤m

=
m−1∏
k=0

(k!)2

(k + r + 1)m
6= −1,−2, ...,−(2m− 1)

where (...)m stands for the Pochhammer symbol is the well-known determinant
of the generalised Hilbert matrix [14, pp. 98-99 and 300]. Next, let the (i, j)
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entry of two m × m matrices be αij and βij = (−1)i+jαij , respectively. Then,
det ‖βij‖ = det ‖αij‖ [15, p. 8, Entry 1.23 and p. 29]. Now, since it is easily seen

that there exists the relation A
(r)
m (1) = (−1)rmH(r)

m , we have

A(0)
m (1) =

[1!2! · · · (m− 1)!]
4

1!2! · · · (2m− 1)!
, A(1)

m (1) =
[1!2! · · · (m− 1)!]

4
[m!]

2

1!2! · · · (2m− 1)!(2m)!
.

By (5b) the elements a1,k are

a1,1 = 1, a1,2m =
m

2(2m− 1)
, an,2m+1 =

m

2(2m+ 1)
,

and we arrive at (14a).
Unfortunately, it appears that when n ≥ 2 the closed-form evaluation of the

determinants A
(r)
m (n) is unknown, and thus our an,k are not given explicitly. This

is very similar to the case of the Stieltjes expansion for the gamma function [4, pp.
348-350] where the elements in the continued fraction are also unknown.However,
this difficulty can be overcome numerically. First, the various programs for sym-
bolic manipulation and computation, such as Mathematica (Wolfram Research),
enable an easy computation of these determinants up to order 10–15. We have
used Mathematica to compute the elements given in Table 1. Second, the determi-
nants can be avoided altogether by making use of the “qd algorithm” [4, p. 227].

Thus for any n the corresponding sequences
{
q
(0)
m

}∞
m=1

and
{
e
(0)
m

}∞
m=1

in

an,1 = 1, an,2m = −q(0)
m , an,2m+1 = −e(0)m

can be computed by the rhombus rules.

Table 1. Elements ank of the continued fraction in (5a) for several
values of n (rows) and k (columns).

n\k 1 2 3 4 5 6

1 1 1
2

1
6

1
3

1
5

3
10

2 1 1
4

7
36

17
63

647
2975

294777
1099900

3 1 1
8

37
216

217
999

30271
143375

1566514917
6568807000

4 1 1
16

175
1296

493
2835

2081687
10784375

10844839670553
51313584550000

5 1 1
32

781
7776

26281
189783

10916749081
64142065625

764501700472728669
4098615465682300000

Preliminary numerical experiments with continued fractions in (5) show rapid
convergence. For example, the 11th approximants for all ζ(n), n ≥ 2, give values
with an error of less than 10−9.
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2550 DJURDJE CVIJOVIĆ AND JACEK KLINOWSKI

References

[1] B. C. Berndt, Ramanujan’s Notebooks, Part II, Springer-Verlag, New York, 1989. MR
90b:01039
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[11] G. A. Baker, Jr. and P. Graves-Morris, Padé Approximants, Part I, Addison-Wesley, Reading,

MA, 1981. MR 83a:41009a
[12] W. Rudin, Principles of Mathematical Analysis, McGraw Hill, New York, 1976. MR 52:5893
[13] A. Erédlyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Tables of Integral Transforms,

Vol. II, McGraw-Hill, New York, Toronto and London, 1954. MR 16:468c
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